
Data Quality and Query Cost in Pervasive

Sensing Systems 1

David J. Yates a Erich M. Nahum b

James F. Kurose and Prashant Shenoy c

aComputer Information Systems Dept., Bentley University,
Waltham, Massachusetts 02452, USA

bIBM T.J. Watson Research Center, 19 Skyline Drive,
Hawthorne, New York 10532, USA

cDept. of Computer Science, University of Massachusetts,
Amherst, Massachusetts 01003, USA

Abstract

This research is motivated by large-scale pervasive sensing applications. We exam-
ine the benefits and costs of caching data for such applications. We propose and
evaluate several approaches to querying for, and then caching data in a sensor field
data server. We show that for some application requirements (i.e., when delay drives
data quality), policies that emulate cache hits by computing and returning approx-
imate values for sensor data yield a simultaneous quality improvement and cost
saving. This win-win is because when system delay is sufficiently important, the
benefit to both query cost and data quality achieved by using approximate values
outweighs the negative impact on quality due to the approximation. In contrast,
when data accuracy drives quality, a linear trade-off between query cost and data
quality emerges. We also identify caching and lookup policies for which the sensor
field query rate is bounded when servicing an arbitrary workload of user queries.
This upper bound is achieved by having multiple user queries share the cost of a
single sensor field query. Finally, we demonstrate that our results are robust to the
manner in which the environment being monitored changes using models for two
different sensing systems.

Key words: pervasive sensing systems, wireless sensor networks, query processing,
end-to-end delay, data accuracy, energy efficiency, caching and replication.

Email address: dyates@bentley.edu (David J. Yates).
1 This work was supported in part by the Bentley Laboratory for Intelligent System
Software and the National Science Foundation under grant EEC-0313747.

Preprint submitted to Pervasive and Mobile Computing 8 October 2008

1 Introduction

Applications for pervasive sensing systems vary in scale from monitoring and
controlling microscopic manufacturing equipment, to implementing an earth-
quake early warning system for a country like Japan. There are many perfor-
mance metrics of interest in sensing systems for such applications. We focus
on two that are common to the vast majority of sensing applications:

(1) The accuracy of the data acquired by the application from the sensor
networks; and

(2) the total system end-to-end delay incurred in the sequence of operations
needed for an application to obtain sensor data.

Although almost all pervasive sensing applications have performance require-
ments that include accuracy and system delay, their relative importance may
differ between applications. We therefore define the quality of the data pro-
vided to sensing applications to be a combination of accuracy and delay. As
in most systems, improved quality usually comes at some cost. For current
wireless sensor networks, the most important component of cost typically is
the energy consumed in providing the requested data. In turn this is domi-
nated by the energy required to transport messages through the sensor field.
This cost versus quality trade-off has recently been an active area of research
[2,11,22–24,26,28].

To perform our research, we construct a model for a pervasive sensing system.
We then develop novel policies for caching sensor network data values in sensor
field gateway servers, and then retrieving these values via cache lookups. We
also propose a new objective function for data quality that combines accuracy
and delay. Finally, we use our sensing system model to assess the impact of
several factors on data quality and query cost performance:

• Our caching and lookup policies;
• the relative importance of data accuracy and system end-to-end delay; and
• the manner in which the sensed data values in the environment change.

This assessment evaluates seven different caching and lookup policies by im-
plementing them in a simulator based on CSIM 19 [20,21].

Almost all sensing system deployments have three main components:

(1) One or more sensor fields consisting of sensor field nodes that communi-
cate with one or more base stations;

(2) One or more data servers (or gateways) that accept requests for sensor
data and generate replies for these requests; and

(3) Monitoring and control centers that are connected to the appropriate

2

sensor data servers via a backbone network.

Fig. 1. Sensing System Deployment.

Figure 1 shows an example of such a deployment with two sensor fields, one
data server, and one monitoring and control center. If the data server shown
in this figure is augmented with storage, it can store and cache sensor field
values that are carried in query replies.

The caching approaches we propose are designed to be general since they
make no assumptions about whether the sensor network architecture uses
a structured or unstructured data model. In other words, our approaches are
independent of the database model for the sensor network. The database could
implement a structured schema that extends a standard like the Structured
Query Language (SQL). The TinyDB and Cougar systems both advocate this
approach [5,16]. However, the schema could also be modified while the system
is running (e.g., as in IrisNet [7]). The database model might also expose a
low-level interface to the sensing application. Directed Diffusion [12] does this
by allowing applications to process attributes or attribute-value pairs directly.
DSN [4], Tenet [8], Kairos [9], and Regiment [17] do this by introducing task-
oriented or declarative programming languages for applications to acquire and
process sensor network data.

1.1 Data Acquisition and Caching in Pervasive Sensing Systems

Consider the impact of adding a cache to the data server or gateway in Fig-
ure 1. Figure 2 shows such a system in which a cache is added to the internal
architecture of the server, on the “border” between the sensor field(s) and the
backbone network. There are two possible data paths that can be traversed
in response to a query from the backbone network:

• For a cache miss, a query is sent to the sensor field by the gateway, incurring
a cost. To update the cache, each sensor data value vi is copied into a cache
entry. A cache entry, eli, associates with location li, the most recent value
observed at this location, and its timestamp into the tuple 〈li, vi, ti〉. We
say that the system delay, Sd, is the time between an application query
arriving at the point labeled Querym in Figure 2 and the corresponding reply
departing from Replym. The value deviation, Dv, is the unsigned difference

3

Fig. 2. Sensor Network Data Server or Gateway with a Cache.

between the data value in Replym and the true value at li when Replym
leaves the gateway reply queue.
• The data path for a cache hit is much shorter than for a cache miss. For

example, if the cache is indexed by location, and a cache entry is present
for a location li specified in a query, a reply can be generated using only the
information in the tuple that corresponds to li. Since the processing required
to perform this cache lookup and generate a reply is relatively small, we
assume that the system delay for a cache hit (Sd) and its associated cost
are both zero. We also determine the value deviation for cache hits (Dv) in
the same way as for cache misses.

We exploit spatial locality within sensor field data in the cache. Specifically,
some caching and lookup policies allow cache “hits” in which the value at
location li is approximated based on values vi′ from neighboring location(s)
{li′ ∈ N(li)}. (Here N(li) denotes the neighborhood of location li.) We develop
and describe three such policies that implement what we call approximate
lookups and queries. We compare these approximate policies with four precise
lookup and query policies that only use information associated with location
li to process queries that reference location li.

2 Cost and Quality in Sensing Systems

2.1 Caching and Lookup Policies

Our caching and lookup policies are designed to explore alternative techniques
for increasing the effective cache hit ratio, and thus conserving sensing system
resources.

4

All of the caching and lookup policies we propose and evaluate incorporate an
age threshold parameter T that specifies how long each entry is stored in the
cache. We now describe all seven of our caching and lookup policies. All hits,
all misses, simple lookups and piggybacked queries implement precise lookups
and queries. On the other hand, greedy age lookups, greedy distance lookups,
and median-of-3 lookups implement approximate lookups and queries.

• All hits (age threshold parameter T =∞): In this policy cache entries are
loaded into the cache but are never deleted, updated, or replaced.
• All misses (age parameter T = 0): In this policy entries are not stored in

the cache.
• Simple lookups (T): This caching policy results in a cache hit or cache miss

based on a lookup at the location specified in each user query. If consecutive
misses occur in the cache for the same location, this policy sends redundant
queries into the sensor field. When a reply is received its value is loaded into
the cache, stored for T seconds, and then deleted.
• Piggybacked queries (T): A cache hit or miss is determined only by a

lookup at the location specified in the user query. If a query has already
been issued to fill the cache at a particular location, subsequent queries
block in a queue behind the original query and leverage the pending reply
to fulfill multiple queries.
• Greedy age lookups (T): A cache hit or miss is determined by a lookup

first at the location specified in the query, and second by lookups at all
neighboring locations. If there is more than one neighboring cache entry,
the freshest (newest) cache entry is selected. As for piggybacked queries, if
a query has already been issued to fill the cache at any of these locations,
subsequent queries block in a queue behind the original query and leverage
the pending reply to fulfill multiple queries. This is also true for the last
two policies: greedy distance lookups and median-of-3 lookups.
• Greedy distance lookups (T): A cache hit or miss is determined by a

lookup first at the location specified in the query, and second by lookups
at neighboring locations. If there is more than one neighboring cache entry,
the nearest cache entry is selected.
• Median-of-3 lookups (T). A cache hit or miss is determined by a lookup

first at the location specified in the query, and second by lookups at all
neighboring locations. If there are at least three neighboring cache entries,
the median of three randomly selected entries is selected as the value re-
turned with a cache hit. If there are one or two neighboring cache entries, a
randomly selected entry provides a cache hit. Otherwise, the query is treated
as a miss.

By implementing blocking behind pending sensor field queries, four of these
seven policies have an upper bound on the sensor field query rate, Rf . Specif-
ically,

5

max(Rf) =
|N|
T
. (1)

The four policies are piggybacked queries, median-of-3 lookups, and the two
approximate greedy policies. In Equation (1), |N| is the number of distinct
locations that can be specified in queries for sensor data.

2.2 Sensing System Data Quality and Query Cost

We normalize sensor network data quality in order to compare quality mea-
surements from different sensing systems, as well as for different system pa-
rameters (e.g., number of sensors, distance between sensors, etc.) We define
data quality to be a linear combination of normalized system delay and nor-
malized value deviation using a parameter A, which is the relative importance
of delay when compared with value deviation. The expression that defines
quality, denoted Qn, is:

Qn =A
1

(1 + e−b)
+ (1− A)

1

(1 + e−c)
(2)

where − b and − c are the exponents used to perform softmax normalization
on delays and value deviations, and 0 ≤ A ≤ 1. The exponents in Equation (2)
are the z scores of their respective values and are therefore defined as follows:

− b=− Sd −mean(Sd)

stddev(Sd)
, and (3)

− c=− Dv −mean(Dv)

stddev(Dv)
. (4)

Since small values of system delay (Sd) and value deviation (Dv) are both
desirable, smaller values of Qn, e.g., 0 < Qn � 0.5 imply better data quality,
and larger values of Qn correspond to worse quality. Softmax normalization
yields transformed values that lie in the range [0, 1]. Because of this property,
and because of our definition of A, 0 ≤ Qn ≤ 1. This type of normalization has
been used by others in neural networks; data mining for pattern recognition;
and data classification [1,3,10,19].

We use two different sensing system models in our research in order to gener-
alize our results. The first model uses correlated random variables to simulate
how the environment changes for 1000 sensor locations. This model gives us
the flexibility to vary how the environment changes. The second model uses
real-world trace data to drive how the environment changes. This trace data

6

was taken from 54 light, temperature, and humidity sensors deployed in the
Intel Berkeley Research lab over a five-week period [6].

2.3 Simulated Changes to the Environment

For the simulated changes to environment, the sensor field is a 3-dimensional
field with rectangular planes on six faces. There is an 8-unit spacing between 10
sensors in the X-dimension, a 6-unit spacing for 10 sensors in the Y-dimension,
and a 4-unit spacing for 10 sensors in the Z-dimension. Four base stations are
placed on the X-Y plane. These four base stations are then connected to the
gateway server that has the common cache. Sensors always communicate with
their closest base station at a cost that incorporates free-space energy loss for
each transmission [18]. Thus, the properties of each one-way communication
to and from location l are as follows:

Costl = p r2
b′ | min(Costl) = 1 unit (5)

where rb′ is the distance between location l and its nearest base station b′, and
p is the normalization constant for the set of costs. In addition,

Delayl = q rb′ | max(Delayl) = 1 second (6)

where q is the normalization constant for the set of delays. We assume that
all four base stations communicate with the gateway server containing the
cache at zero cost, with zero delay, and using infinite bandwidth. Thus, the
minimum cost to query a location in the sensor field is normalized to 2 units (1
for the query + 1 for the reply), and the maximum delay to query a location in
the sensor field is 2 seconds (not including queuing delay). Finally, each base
station is connected to the sensor field with an access link with a capacity of
25 queries per second.

2.4 Trace-driven Changes to the Environment

For the trace-driven changes to the environment, our second sensor field model
has more than an order of magnitude fewer locations (54 instead of 1000). The
sensors are arranged in a 2-dimensional field at the numbered locations in
Figure 3, which is taken from [6]. Each entry in the trace is from a Mica2Dot
sensor, which senses humidity, temperature, light, and battery voltage. The
trace contains over 2.2 million entries taken over more than five weeks in early
2004. This means that one location reads and records new sensor field values
an average of about once every 1.33 seconds. We wanted to use the most

7

Fig. 3. Sensor Field at Intel Berkeley Research Lab.

dynamically changing of the sensor field values in our model to maximize the
error in query accuracy. We therefore chose the value with the largest average
difference between samples. This was light intensity, which is reported in Lux.
A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office, and
100,000 Lux to full sunlight.

Four base stations are placed at the corners of the floor plan shown in Figure 3.
As before, sensors always communicate with their closest base station. We
further assume that the cost and delay of each one-way communication are
given by Equations (5) and (6), respectively.

2.5 Query Workload Model

We use a query workload model that is well suited for pervasive sensing ap-
plications that include monitoring and control functions. Many of these ap-
plications have a workload that includes a periodic arrival process of queries
as well as a random arrival process. There are examples of query workloads
that capture both of these components in the literature, e.g., [12,13,25]. On
the other hand, other researchers assume that queries either have exclusively
periodic interarrival times [15,16] or random (usually exponential) interarrival
times [5,29]. We assume that the query workload for our applications consists
of the superposition of two query processes: a polling component that slowly
scans the sensor field at a fixed rate, and a random component that consists of
queries to different locations in the sensor field. Within this random compo-
nent it is equally likely that each location in the sensor field will be sampled.
This workload model is similar to models used by others in [12,13,25]. Specif-
ically, our query workload is characterized by two parameters:

• τ = the period of the polling component of the query workload (τ > 0); and
• λ = the average query arrival rate of a process that represents the random

component of our workload.

8

For simulated changes to the environment, λ and τ are fixed: λ = 81 queries
per second is used as the rate parameter to generate queries with exponentially
distributed interarrival times with mean 1/λ. The parameter τ is set to 111.11
seconds so that the arrival rate for polling queries is 9 queries per second. When
λ = 81 and τ = 111.11, the aggregate arrival rate for queries is 81 + 9 = 90
queries per second. Since the total capacity of the sensor field access links is
4× 25 = 100 queries per second, their average link utilization is 0.90 for “all
miss” runs, and less for runs that include some cache hits.

For trace-driven changes to the environment, λ and τ are fixed for the results
described in Section 3: λ = 0.81 queries per second and τ = 600 seconds. This
makes the average arrival rate for queries two orders of magnitude less than
query rate for simulated changes, namely 0.9 queries per second. The total
capacity of the sensor field access links is 4×0.25 = 1 query per second. Thus,
the average link utilization is also 0.90 for “all miss” runs. These parameters
are varied in Sections 4 and 5 as we examine performance trends in our two
different sensing system models.

3 Discussion of Results

We wanted our simulated results to capture the fact that sensor field readings
are correlated in both space and time. In our sensor field model, at time t+ 1,
the value at each location l is drawn from a normal distribution with mean

µl,t+1 =
1

3
µ+

1

3
µl,t +

1

3
µN(l),t. (7)

The long-term mean of this distribution is µ = 0. The standard deviation
σ = 0.407514, and the tails are truncated at minimum / maximum values of
µ−6σ / µ+6σ. This standard deviation is the same as the standard deviation
of the system end-to-end delays during a set of 20 runs without a cache for
our 1000-node sensor network model. N(l) denotes the neighbors of location
l, and each neighboring location l′ of l contributes to µN(l),t in proportion to
µl′,t/rl′ , where rl′ is the distance between locations l and l′. This model for
a changing environment is based on the model for correlated sensor network
data developed by Jindal and Psounis [14].

Each data value presented in our results is derived by averaging 20 simulation
runs initialized with different seeds. Additional details of our experimental
methodology are described in [27].

The odd-numbered figures, Figures 5, 7 and 9, show results for light intensity
in Lux measured over time in the Intel Berkeley lab data set. These results

9

are for T = 90 seconds, and 0.9 queries per second. Note that because of
Equation (1), the maximum sensor field query rate, max(Rf), is reduced to
54/90 = 0.6 queries per second. The even-numbered figures, Figures 4,����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 4. Cost vs. Quality for A = 0.1
and Correlated changes over 1000 lo-
cations. ����������	�

�

�

�

��

��

��

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 5. Cost vs. Quality for A = 0.1
and Trace-driven changes over 54 lo-
cations.

����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� � ���

�	
��

�
��

�

�����

�

�����	�

����
	�
�����

��		�����	�
�����

��		��������
�����

�	���� �! "�
�����

#����$�%��&�	��	�

Fig. 6. Cost vs. Delay for A = 0.1
and Correlated changes over 1000 lo-
cations. ����������	�

�

�

�

��

��

��

� � � � � �

	
��

�
�
��

��������

��������
�

�����
�������

��

����
�������

��

�������������

�
��� !�"!��������

#���$�%��&�
��
�

Fig. 7. Cost vs. Delay for A = 0.1
and Trace-driven changes over 54 lo-
cations.

10

����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� ��	

�������������

�
�
��

��������

����������

������������

����� ��!�������

����� �����������

"�����#�$#�������

%�!! &�'��(�����

Fig. 8. Cost vs. Value deviation for
A = 0.1 and Correlated changes over
1000 locations.����������	�

�

�

�

��

��

��

� ��� ��� ��� ���

�	
������	����

�
�
��

�

����

�

������

����
�
�����

������	��
�����

����������
�����

 ���	�!�"!�
�����

#����$	%�&������

Fig. 9. Cost vs. Value deviation for
A = 0.1 and Trace-driven changes
over 54 locations.

6 and 8, are for correlated changes to the environment with both the age
parameter, T , and the average query rate scaled for the more rapidly changing
environment. Specifically, T = 8.88 seconds and the average user query rate
is 90 queries per second. Because of Equation (1), the maximum sensor field
query rate max(Rf) = 1000/T = 112.5 queries per second.

We can draw two main conclusions from our experiments using the correlated
and trace-driven models for how the environment changes. Results from these
experiments appear in Figures 4 through 11.

1. There is a cost vs. quality trade-off for some data quality requirements
but not others. For example, consider the results shown in Figures 4 and 5.
Figure 5 shows cost versus quality for all seven caching and lookup policies,
where A = 0.1 and the values at each location are changed according to the
lab trace [6]. At the smallest cost, we have a 100% cache hit ratio (labeled “All
hits”) that provides a quality of below 0.6 for zero cost. For the largest cost,
we see that a 0% cache hit ratio (labeled “All misses”) provides the third-best
quality at a cost of approximately 19 units. Recall that for quality, smaller
values indicate better quality. The remaining five caching and lookup policies
provide a linear trade-off between cost and quality. Figure 4 also shows a
trade-off between cost and quality for the same value of A and the same seven
caching and lookup policies, but with changes to the environment now modeled
by a series of values correlated in space and time. There are two observations
worth noting when comparing these first two figures. First, the cost values in
Figure 5 are less than in Figure 4 because the distances within the sensor field

11

are smaller. Second, the trends are similar between these two figures, with the
exception of the increase in quality of the “all misses” policy between Figure 4
and Figure 5. This worse “all misses” quality is due entirely to an increase in
the normalized delay term in the right hand side of Equation (2). This can be
verified by comparing the relative differences in delays between the policies,
shown on the horizontal axes in Figures 6 and 7.

We now examine system configurations for which delay is the more important
component of quality in more detail. Figures 10 and 11 show such configura-
tions for a value of A = 0.9. The most remarkable result in these figures is that
there is no trade-off between cost and quality when we significantly prioritize
delay over value deviation. The two greedy caching and lookup policies have
the best cost performance and the best quality performance for both models
of changing the environment in Figures 10 and 11. Even though the “all hits”
policy has the best absolute performance in these figures, we don’t consider
this a practical policy since it never updates the cache.����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 10. Cost vs. Quality for A = 0.9
and Correlated changes over 1000 lo-
cations. ����������	�

�

�

�

��

��

��

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 11. Cost vs. Quality for A = 0.9
and Trace-driven changes over 54 lo-
cations.

In studying Figures 4 through 11 it is interesting to understand which system
variables depend on which system parameters. For example, cost, delay, and
hit ratio values in these simulation results each depend on the following three
variables:

• The caching and lookup policies themselves (including the value of T);
• the physical configuration of the sensor field; and
• the query arrival process.

12

Thus, a cost vs. delay or a cost vs. hit ratio graph is the same for different
experiments in which these three variables are held constant. To see how cost
and delay both increase with lower cache hit ratios, Table 1 shows the cache
hit ratio for each of the (cost, delay) points in Figure 6. Similarly, Table 2
shows the hit ratio for each of the (cost, delay) points in Figure 7.

Table 1
Hit ratios, Costs, and Delays for T = 8.88 s, 90 Queries/s, and Correlated changes
over 1000 locations.

Policies Hit ratio Cost Delay

All hits 1 0 0

All misses 0 94 1.18

Simple lookup 0.40 56 0.69

Greedy age lookup 0.62 37 0.39

Greedy distance lookup 0.60 38 0.44

Median-of-3 lookup 0.55 43 0.51

Piggyback queries 0.40 57 0.69

Table 2
Hit ratios, Costs, and Delays for T = 90 s, 0.9 Queries/s, and Trace-driven changes
over 54 locations.

Policies Hit ratio Cost Delay

All hits 1 0 0

All misses 0 19 4.4

Simple lookup 0.59 7.7 1.0

Greedy age lookup 0.78 4.0 0.47

Greedy distance lookup 0.76 4.4 0.55

Median-of-3 lookup 0.71 5.4 0.68

Piggyback queries 0.59 7.7 1.0

Value deviation depends on the same parameters listed above, and addition-
ally on the manner in which the environment changes. Thus, cost vs. value
deviation graphs are the same when the policies, sensor field, query arrival
process, and method for changing the environment are all identical. Figure 8
and Figure 9 show cost vs. value deviation results for correlated changes and
trace-driven changes to the environment, respectively. The most interesting
difference between the two figures is the overall increase in the dispersion of
the value deviations in Figure 9 when compared with those in Figure 8. This is

13

because the variation in sensor field values is much greater in the Intel Berke-
ley trace data than values that are drawn from our normal distribution with
a time-dependent mean.

2. Different lookup policies perform best depending on whether delay or value
deviation is most important to the application. If data quality is more impor-
tant to the application than cost, and value deviation is more important than
delay, simple lookups and piggybacked queries provide the best performance.
This can be seen in Figures 4 and 5. In both of these figures, simple lookups
and piggybacked queries yield the best quality, other than the “all misses”
policy for correlated changes. When value deviation is most important, the
expense of taking a cache miss (by not computing an approximate value from
neighboring values for these two policies) is worthwhile, since value deviation
is deemed most important. If query cost is at a premium compared with qual-
ity, using greedy age lookups or greedy distance lookups is preferred. These
two policies have the most favorable cost performance in both sensor field
models, other than the “all hits” case.

If delay is more important to quality than value deviation, Figures 10 and 11
show that performing greedy age lookups or doing greedy distance lookups
yields the best performance. This is true regardless of whether cost or quality
is more important to the application. We again assume that the “all hits”
case is not useful to realistic applications. For these policies, getting the fast
response time of a cache “hit” (which might be approximated from values
at one or more neighboring locations) is worthwhile, since low delay is more
important than a more accurate value.

The fact that different lookup policies perform best for different application
requirements can be explained by examining the underlying delays and value
deviations of the policies themselves. For example, consider the case where
A = 0.1 and changes to the environment are driven by the lab traces. A value
of A = 0.1 biases quality toward value deviation performance rather than
delay performance. In this case, value deviation performance is significantly
better when using precise lookups and queries, as shown in Figure 9. Figure 5
therefore shows that the data quality supported by the simple lookup and
piggyback query policies is superior to the data quality supported by the
greedy and median-of-3 lookup policies.

Now consider the case where A = 0.9 and changes to the environment are
again driven by the lab trace data. A value of A = 0.9 biases quality toward
delay performance rather than value deviation performance. In this case, both
delay and cost performance are best for approximate lookups and queries, as
shown in Table 2. Figure 11 thus shows that the query cost incurred for doing
greedy age lookups or greedy distance lookups is superior to (i.e., less than)
the query cost incurred by the other policies for quality that is also better.

14

It is helpful to summarize the cost and quality performance results presented
above as follows:

• When value deviation is more important to quality than delay, there is
a linear cost vs. quality trade-off. We obtain the best cost performance by
implementing policies that approximate sensor values by using cached values
from nearby locations. The best quality performance is achieved by policies
that always query and cache the sensor field location specified in the user
query.
• When delay is more important than value deviation, policies that approxi-

mate values using cached values from nearby locations provide the best cost
performance as well as the best quality performance.
• These results hold for both simulated changes to the environment and trace-

driven changes to the environment.

4 Performance Trends when Value Deviation is Most Important

The results in the previous section provide a thorough understanding of cost
and quality performance in pervasive sensing systems for two models of how
the environment changes. We next investigate performance trends that emerge
as the query rate increases or decreases relative to the rate at which the
environment changes.

Because our simulator fully models an environment with correlated changes
specified by Equation (7), we explicitly vary the rate at which the environment
changes. To do this we increase the number of locations changed per second
from 9 to 90 to 900 while maintaining a query workload with an average
rate of 90 queries per second. The Intel Berkeley lab traces specify how the
environment changes for our trace-driven experiments. In this case, we vary
the relative rate at which the environment changes by decreasing the average
query rate from 90 to 9 to 0.9 queries per second.

We begin this investigation by considering cost and quality performance when
value deviation is more important in determining data quality than system
end-to-end delay. Results for these simulations appear in this section. In the
following section, we explore sensor network applications for which system
delay is more important than value deviation.

The same high-level conclusions presented in the last section hold true when
the relative rate at which the environment changes is increased by two orders
of magnitude. However, some of the underlying results differ either qualita-
tively or quantitatively. Figures 12 through 17 show these results for correlated
changes to the environment. Figures 18 through 23 show the corresponding

15

����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 12. Cost vs. Quality for A = 0.1
and 9 of 1000 Correlated changes/s.����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 13. Cost vs. Quality for A = 0.1
and 90 of 1000 Correlated changes/s.����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 14. Cost vs. Quality for A = 0.1
and 900 of 1000 Correlated changes/s.

results for trace-driven changes to the environment.

If value deviation is more important than delay, simple lookups and piggy-
backed queries again provide the best performance when quality is more im-
portant than cost. This can be seen in Figures 12, 13 and 14. If cost is at a pre-
mium compared with quality, greedy age lookups or greedy distance lookups
trade worse quality for lower cost. In fact, these policies have the most fa-
vorable cost performance, other than the “all hits” case. These figures also
show that our results are robust with respect to how rapidly our correlated
environment changes. For example, the trade-off between cost and quality is
linear in Figures 12, 13, and 14. Excluding the “all hits” case again, the range
of quality values decreases as the rate at which the environment changes in-
creases. In spite of these differences in quality performance, the relative cost
and quality performance of most of the policies remain the same. Figures 15,
16, and 17 confirm a strong positive correlation between value deviation and
quality when A = 0.1. Examining these figures in increasing order illustrates
how value deviation increases as the rate at which the environment changes

16

����������	
�����

�

���

���

���

���

���

��� ��� ��� ��� ��	

�����

�
�

�
��

�
��

��
��
�
�

������

��������

�����������

� ������!�������

� ���������������

"�����#�$#�������

%�!!�&�'��(�� ���

Fig. 15. Value deviation vs. Quality
for A = 0.1 and 9 of 1000 Correlated
changes/s. ����������	
�����

�

���

���

���

���

���

��� ��� ��� ��� ��	

�����

�
�

�
��

�
��

��
��
�
�

������

��������

�����������

� ������!�������

� ���������������

"�����#�$#�������

%�!!�&�'��(�� ���

Fig. 16. Value deviation vs. Quality
for A = 0.1 and 90 of 1000 Correlated
changes/s. ����������	
�����

�

���

���

���

���

���

��� ��� ��� ��� ��	

�����

�
�

�
��

�
��

��
��
�
�

������

��������

�����������

� ������!�������

� ���������������

"�����#�$#�������

%�!!�&�'��(�� ���

Fig. 17. Value deviation vs. Quality for
A = 0.1 and 900 of 1000 Correlated
changes/s.

increases.

For trace-driven changes to the environment, simple lookups and piggybacked
queries also provide the best performance when quality is more important
than cost. This can be seen in Figures 18, 19, and 20. The trade-off between
cost and quality is also linear in these figures. Although the costs increase
from Figure 18 to Figure 19 to Figure 20, the range of normalized quality is
approximately the same (again, excluding the “all hits” case).

Figures 21, 22, and 23 confirm a positive correlation between value deviation
and quality when A = 0.1 and changes to the environment are driven by our
trace data. Examining these figures in increasing order illustrates how value
deviation increases as the average query rate (and thus the cache hit ratio)
decreases.

17

����������	�

�

�

�

��

��

��

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 18. Cost vs. Quality for A = 0.1,
90 Queries/s and Trace-driven
changes over 54 locations.����������	�

�

�

�

��

��

��

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 19. Cost vs. Quality for A = 0.1,
9 Queries/s and Trace-driven changes
over 54 locations.����������	�

�

�

�

��

��

��

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 20. Cost vs. Quality for A = 0.1,
0.9 Queries/s and Trace-driven
changes over 54 locations.

5 Performance Trends when End-to-End Delay is Most Important

In the previous section we presented performance results that are important
to sensor network applications for which high accuracy (i.e., low value devia-
tion) is the most important factor in the quality of their data. In this section
we consider how performance varies as the query rate increases or decreases
relative to the rate at which the environment changes when system end-to-end
delay is most important. For correlated changes to the environment, we again
vary the rate at which the environment changes from 9 to 90 to 900 locations
per second while maintaining a query workload with an average rate of 90
queries per second. For the Intel Berkeley lab traces, we again vary the rela-
tive rate at which the environment changes by decreasing the average query
rate from 90 to 9 to 0.9 queries per second.

18

����������	�

�

���

���

���

���

��� ���� ��� ���� ���

	
����

�
��

��
�
��
�
�
�
�

�������

���������

����������
�

�������� ������
�

���������������
�

!����"�#"������
�

$ �%�&��'
����

Fig. 21. Value deviation vs. Qual-
ity for A = 0.1, 90 Queries/s and
Trace-driven changes over 54 loca-
tions. ����������	�

�

���

���

���

���

��� ���� ��� ���� ���

	
����

�
��

��
�
��
�
�
�
�

�������

���������

����������
�

�������� ������
�

���������������
�

!����"�#"������
�

$ �%�&��'
����

Fig. 22. Value deviation vs. Quality for
A = 0.1, 9 Queries/s and Trace-driven
changes over 54 locations.����������	�

�

���

���

���

���

��� ���� ��� ���� ���

	
����

�
��

��
�
��
�
�
�
�

�������

���������

����������
�

�������� ������
�

���������������
�

!����"�#"������
�

$ �%�&��'
����

Fig. 23. Value deviation vs. Qual-
ity for A = 0.1, 0.9 Queries/s and
Trace-driven changes over 54 loca-
tions.

We examine system configurations for which delay is a more important com-
ponent of quality than value deviation. Figures 24 through 29 show such con-
figurations for correlated changes to the environment. For correlated changes
to the environment, the cost remains constant for policies as the rate of change
for sensor values in the environment increases from 9 locations/s to 900 lo-
cations/s. At the same time, the quality performance for all policies is very
similar, but not identical. Figures 30 through 32 show configurations for trace-
driven changes to the environment. In these system configurations, the cost
increases as the average query rate and the cache hit ratio both decrease.

A value of A = 0.9 is used in Figures 24 through 32. This choice of A makes
system delay significantly more important to quality than value deviation.
This is demonstrated, for example, by Figures 27, 28, and 29. These figures

19

����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 24. Cost vs. Quality for A = 0.9
and 9 of 1000 Correlated changes/s.����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 25. Cost vs. Quality for A = 0.9
and 90 of 1000 Correlated changes/s.����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 26. Cost vs. Quality for A = 0.9
and 900 of 1000 Correlated changes/s.

all show a strong positive and linear correlation between delay and quality for
correlated changes to the environment. Examining these figures also confirms
that the delays for each policy are constant across the three system config-
urations, and furthermore are identical to those in Table 1, since the query
workloads are the same.

For correlated changes to the environment, Figures 24, 25, and 26 show that
performing greedy age lookups or greedy distance lookups yields the best cost
performance, and the best quality performance, excluding the “all hits” case.
These figures also show that our results are robust with respect to how rapidly
our correlated sensor field values change, and that the relative performance
differences among our policies remain the same. Similar results hold for trace-
driven changes to the environment. These can be seen in Figures 30, 31, and
32. However, it appears that as higher cache hit ratios (e.g., in Figure 30) cause
a performance convergence among the caching policies, the median-of-3 policy
exhibits better cost and quality performance than doing greedy lookups.

20

����������	
�����

�

���

���

���

���

�

���

��� ��� ��	 ��
 ���

������

�
��
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 27. Delay vs. Quality for A = 0.9
and 9 of 1000 Correlated changes/s.����������	
�����

�

���

���

���

���

�

���

��� ��� ��	 ��
 ���

������

�
��
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 28. Delay vs. Quality for A = 0.9
and 90 of 1000 Correlated changes/s.����������	
�����

�

���

���

���

���

�

���

��� ��� ��	 ��
 ���

������

�
��
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 29. Delay vs. Quality for A = 0.9
and 900 of 1000 Correlated changes/s.

We have seen that for correlated changes to the environment, one or more of
the greedy policies provide the best cost and quality performance among the
realistic policies. For trace-driven changes to the environment, greedy policies
(including the median-of-3 policy) also provide the best cost performance and
the best quality performance. This can be seen in Figures 30, 31, and 32, in
which there is no trade-off between cost and quality. As costs increase from
Figure 30 to Figure 31 to Figure 32, the range of quality values also increases.
However, these quality values remain in the continuum between the “All hits”
and “All misses” quality values.

6 Performance Impact of Cache Entry Age Threshold (T)

In practice, picking a good value for T depends on how rapidly the environ-
ment being monitored might change, and the utility of a cached entry as it
approaches being T seconds old. If T is too small, it is easy to imagine that the

21

����������	�

�

�

�

��

��

��

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 30. Cost vs. Quality for A = 0.9,
90 Queries/s and Trace-driven
changes over 54 locations.����������	�

�

�

�

��

��

��

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 31. Cost vs. Quality for A = 0.9,
9 Queris/s and Trace-driven changes
over 54 locations.����������	�

�

�

�

��

��

��

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 32. Cost vs. Quality for A = 0.9,
0.9 Queries/s and Trace-driven
changes over 54 locations.

cache might not be effective. If T is too large, then the cache may be helpful
in terms of saving cost, but may be harmful if value deviation increases as a
function of elapsed time.

In this section we present results for values of T that are both larger and
smaller than the values we have used thus far. This allows us to explore two
additional operating regions for pervasive sensing systems. In the first oper-
ating region, the cache hit ratio is increased and the sensor field query rate is
bounded at a rate that is much less than average query arrival rate from the
sensing applications. In the second region, the cache hit ratio is significantly
decreased such that for all interesting caching and lookup policies, less than
10% of queries yield a cache hit.

22

6.1 Larger Values of T

Since energy is typically a critical resource in wireless sensor networks, we
wanted to understand the effects of decreasing resource consumption by reduc-
ing the volume of sensor field query traffic. We accomplished this by increasing
the value of the age threshold parameter associated with cache entries (our
value of T), and thus boosting the cache hit ratio for our age-based policies.

For simple lookups, piggybacked queries, the median-of-3 policy, and both
greedy policies, an age threshold of T = 88.88 seconds was used for correlated
changes to the environment. This value is an order of magnitude larger than
the value of T used for our earlier results. For this larger environment (with
1000 locations), the sensor field is queried an average of 90 times per second
and changed at a rate of 90 locations per second. For this value of T , all of
these policies except simple lookups have an upper bound on the sensor field
query rate of max(Rf) = |N|/88.88 = 11.25 queries per second. This bound
is guaranteed by Equation (1) and implies that the average query rate (90
queries / second) is eight times greater than the peak sensor field query rate.
Our results for this larger value of T appear in Figures 33 through 35 and
Table 3.

The most noticeable difference between the results in Figures 33 through 35
when compared with our earlier results is that the performance differences
between the five age-based policies are quite small. This similar performance����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 33. Cost vs. Quality for A = 0.1,
T = 88.88 s, and Correlated changes
over 1000 nodes.����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� ��	

�������������

�
�
��

��������

����������

������������

����� ��!�������

����� �����������

"�����#�$#�������

%�!! &�'��(�����

Fig. 34. Cost vs. Value deviation for
A = 0.1, T = 88.88 s, and Correlated
changes over 1000 nodes.

23

����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 35. Cost vs. Quality for A = 0.9,
T = 88.88 s, and Correlated changes
over 1000 nodes.

Table 3
Hit ratios, Costs, and Delays for T = 88.88 s, 90 Queries/s, and Correlated changes
over 1000 locations.

Policies Hit ratio Cost Delay

Simple lookup 0.88 12 0.14

Greedy age lookup 0.88 12 0.13

Greedy distance lookup 0.89 10 0.13

Median-of-3 lookup 0.90 10 0.12

Piggyback queries 0.88 12 0.14

of our age-based policies is most pronounced for performance metrics that are
independent of A (e.g., cost, delay, and hit ratio). For example, Table 3 shows
cost and delay performance for all non-trivial policies (from simple lookups
through piggybacked queries) that is almost the same for correlated changes.
Note also that corresponding hit ratios for these policies are also virtually
identical. In fact, the hit ratio for all of these policies falls between 88% and
90% in this table. These hit ratios are much greater than our earlier results in
which the hit ratio ranges were 40% to 62% in Table 1. Even the characteristic
cost vs. value deviation graph, Figure 34, shows much less difference in value
deviation than our earlier results. In all of our results for larger values of
T , the much higher hit ratios (88% or greater) make the cost performance
of our policies fairly close to the case where the hit ratio is 100% (i.e., the
“all hits” case). Furthermore, the quality performance is close to the quality
performance of the all hits case regardless of whether value deviation or delay
is deemed more important to the sensing applications. Figure 33 shows this
converged quality performance when A = 0.1, and Figure 35 shows analogous
results when A = 0.9.

We were surprised that in spite of a significant change in our cache entry aging
parameter, some of our important earlier results still hold. These results can
be summarized as follows:

• When A = 0.9, system delay drives quality, and there is no trade-off between

24

cost and quality. Thus for correlated changes, Figure 35 exhibits the same
trends for cost and quality as the corresponding delays in Table 3.
• When A = 0.1, value deviation in the sensing system causes a trade-off

between quality and cost. Specifically, Figure 33 shows the same trends as
its value deviation counterpart, Figure 34.

6.2 Smaller Values of T

In Section 6.1 we examined results for high cache hit ratios, which were in-
duced by increasing the age threshold, T . We also wanted to study system
configurations with low cache hit ratios. To obtain results for these configura-
tions, we decreased our values of T by an order of magnitude when compared
with the values of T used to produce our earlier results (see Section 3).

For our five age-based policies, an age parameter of T = 0.88 seconds was
used with correlated changes to the environment. Note also that this value
is two orders of magnitude smaller than the value of T used in Section 6.1,
making the upper bound on the sensor field query rate 100 times larger. For
the four applicable policies, max(Rf) = |N|/0.88 = 1125 queries per second.
This bound is quite loose in that it is more than 12 times the average query
rate of 90 queries per second. Results for this smaller value of T appear in this
section in Figures 36 through 38 and Table 4.����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��

������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%� �&'��(������

Fig. 36. Cost vs. Quality for A = 0.1,
T = 0.88 s, and Correlated changes
over 1000 nodes.����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� ��	

�������������

�
�
��

��������

����������

������������

����� ��!�������

����� �����������

"�����#�$#�������

%�!! &�'��(�����

Fig. 37. Cost vs. Value deviation for
A = 0.1, T = 0.88 s, and Correlated
changes over 1000 nodes.

25

����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 38. Cost vs. Quality for A = 0.9,
T = 0.88 s, and Correlated changes
over 1000 nodes.

Table 4
Hit ratios, Costs, and Delays for T = 0.88 s, 90 Queries/s, and Correlated changes
over 1000 locations.

Policies Hit ratio Cost Delay

Simple lookup 0.02 92 1.15

Greedy age lookup 0.08 88 0.93

Greedy distance lookup 0.06 89 1.01

Median-of-3 lookup 0.05 90 1.07

Piggyback queries 0.02 92 1.14

The most interesting results in Figures 36 through 38 are the negative results.
Figure 36 shows that a cache can, for some caching and lookup policies, provide
only marginal benefit when compared to having no cache (illustrated by the
“All misses” results). Furthermore, by using an inappropriate caching and
lookup policy, the presence of a cache for sensor network data can even hurt
quality performance. For example, Figure 36 shows that the greedy lookup
policies yield a cost savings of about 4% while incurring a significant penalty in
quality. What renders these policies perhaps not worthwhile (because of their
worse quality performance) is the significant value deviation that is introduced
by a cache that is almost ineffective. These value deviations are shown in
Figure 37, in which the greedy policies and the median-of-3 lookup policy
show significantly worse value deviation for a negligible or small amount of
cost savings.

There are also interesting positive results shown by these figures. The cost
vs. quality trade-off favors using simple lookups or piggybacked queries when
value deviation drives quality (e.g., when A = 0.1). For correlated changes,
Figure 36 shows that using simple lookups or piggybacked queries provides
about the same quality performance as all misses, while yielding a small cost
savings of 1-2%. The cost savings and quality performance are both more
compelling for trace-driven changes. For this smaller environment (with 54
nodes), the cost savings increases to 12-15% while quality also improves by
about 5%. These results are not shown here, but are discussed further in [27].

26

Now consider the case where delay is more important than value deviation in
Equation (2). For example, when A = 0.9, Figure 38 shows that the cost and
quality performance of the greedy policies and the median-of-3 lookup policy
is better than the performance of not using a cache. Specifically, a cost saving
of up to 5% is obtained with a simultaneous improvement in quality of up to
20%.

The characteristic cost and delay performance shown in Table 4 are highly
correlated. Furthermore, since the cache hit ratio of the age-based policies is
between 2% and 8% in this table, the quality provided by these policies is
clustered toward the “All misses” point near the top of Figure 38. However,
Figure 38 also shows that the greedy policies again provide the best perfor-
mance in terms of both cost and quality.

When the cache hit ratios are low, we have seen that the presence of a cache
provides greater performance benefits when delay drives quality. Specifically
when A = 0.9, we observed cost savings of up to 5% and quality improvements
of up to 20%. In contrast, Figures 36 and 37 make a weaker case for using a
cache when its hit ratio is low (8% or less for all of our age-based policies, as
shown in Table 4).

In this section, we studied the impact of manipulating the cache hit ratio by
varying the cache age threshold parameter, T :

• We achieve a significant cost saving (up to 90% in our configurations) by
increasing T , and thus increasing the cache hit ratio.
• We still achieve a small cost saving (from 2% to 5%) when T is small, but

greater than zero.
• In both of these cases, and for both of our sensor field models, these cost

savings occur with a simultaneous quality improvement when delay is more
important to quality than value deviation [27]. However, when value devi-
ation is more important to quality, we observe quality that is sometimes
worse (by up to 50% in our configurations), and sometimes better (by up
to 5%).

7 Conclusion

The following are the contributions of this paper:

• Sensor network caching and lookup policies that improve data quality and
query cost. We measure the benefit and cost of seven different caching and
lookup policies as a function of the application quality requirements. We
show that for some quality requirements (i.e., when delay drives data qual-

27

ity), policies that emulate cache hits by computing and returning approxi-
mate values for sensor data yield a simultaneous quality improvement and
cost saving. This win-win is because when delay is sufficiently important, the
benefit to both query cost and data quality achieved by using approximate
values outweighs the negative impact on quality due to the approximation.
• Form and magnitude of the cost vs. quality trade-off. For our seven caching

and lookup policies, five of these policies age and then delete cache entries
uniformly based on an age threshold parameter, T . We observe that in
many system configurations these five policies expose a linear cost vs. quality
trade-off. When this linearity is present, we find that the underlying cost vs.
accuracy and/or cost vs. delay functions are also linear. When this linearity
is not present, the performance differences between our policies in terms of
both cost and quality, can be small. When this is true, we observe that the
cache hit ratios for our policies are close in value.
• Bounded cost for some caching and lookup policies. For sensing applications

that require bounded resource consumption, we identify a class of policies
for which the sensor field query rate can be bounded when servicing an
arbitrary workload of user queries. Recall that the domain for our user
queries is the set of discrete locations in the sensor field. This upper bound
is a function of two variables: (1) the number of locations in each sensor field
(these locations are also used to index the cache) and; (2) the age threshold
parameter, T .
• Impact of the manner in which the environment changes on query cost and

data quality performance. Our results characterize and quantify cost and
quality performance for two different sensing systems, which each monitor
environments with different characteristics. These results show that while
the form and magnitude of the cost and quality performance change, the
performance trends generally remain the same. Specifically, the performance
differences between policies change, but the policies that provide the best
quality (and cost) performance in different sensing system configurations
are almost always the same.
• Effect of the age threshold parameter (T) for cache entries on performance.

For the caching policies that we propose and evaluate, the cache hit ratio
for a given query workload can be increased by increasing T . The converse
is also true. We determine how cost and quality performance are impacted
as T is changed by two orders of magnitude. We also compare these results
with “all misses” and “all hits” baseline policies. We achieve a significant
cost saving (up to 90% in our configurations) by increasing T , and thus
increasing the cache hit ratio. We still achieve a small cost saving (from
2% to 5%) when T is small, but greater than zero. When T is too small
and value deviation is most important to quality, we observe quality that is
sometimes worse, and sometimes better.

28

Acknowledgments

The authors would like to thank Eliot Moss, Weibo Gong, Benyuan Liu, and
David Martin for their feedback on earlier drafts of this paper. The researchers
at the Intel Berkeley Research Lab also deserve thanks for sharing the sensor
network traces that we used in this work.

References

[1] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, Oxford, 1995.

[2] A. Boulis, S. Ganeriwal, M. B. Srivastava, Aggregation in sensor networks: an
energy-accuracy tradeoff, in: IEEE Workshop on Sensor Network Protocols and
Applications (SNPA), 2003.

[3] J. S. Bridle, Probabilistic interpretation of feed-forward classification network
outputs, with relationships to statistical pattern recognition, Neurocomputing:
Algorithms, Architecture and Applications 6.

[4] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, I. Stoica,
The design and implementation of a declarative sensor network system, in: ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2007.

[5] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, Y. Yao, The Cougar project:
a work-in-progress report, ACM SIGMOD Record 32 (4) (2003) 53–59.

[6] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, W. Hong, Model-
driven data acquisition in sensor networks, in: International Conference on Very
Large Data Bases (VLDB), Morgan Kaufmann, Toronto, 2004.

[7] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, IrisNet: An architecture for
a world-wide sensor web, IEEE Pervasive Computing 2 (4) (2003) 22–33.

[8] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, E. Kohler, The Tenet architecture for tiered sensor networks, in:
ACM Conference on Embedded Networked Sensor Systems (SenSys), 2006.

[9] R. Gummadi, O. Gnawali, R. Govindan, Macro-programming wireless sensor
networks using Kairos, in: International Conference on Distributed Computing
in Sensor Systems (DCOSS), 2005.

[10] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, San Francisco, California, USA, 2000.

[11] W. Hu, A. Misra, R. Shorey, CAPS: Energy-efficient processing of continuous
aggregate queries in sensor networks, in: IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2006.

29

[12] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva,
Directed diffusion for wireless sensor networking, IEEE/ACM Transactions on
Networking 11 (1) (2003) 2–16.

[13] K. Jamieson, H. Balakrishnan, Y. C. Tay, Sift: a MAC protocol for event-
driven wireless sensor networks, Technical Report 894, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, USA (May
2003).

[14] A. Jindal, K. Psounis, Modeling spatially correlated data in sensor networks,
ACM Transactions on Sensor Networks 2 (4) (2006) 466–499.

[15] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, T. He, RAP: a real-time
communication architecture for large-scale wireless sensor networks, in: IEEE
Real-Time and Embedded Technology and Applications Symposium, 2002.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, TinyDB: an
acquisitional query processing system for sensor networks, ACM Transactions
on Database Systems 30 (1) (2005) 122–173.

[17] R. Newton, G. Morrisett, M. Welsh, The Regiment macroprogramming system,
in: International Conference on Information Processing in Sensor Networks
(IPSN), 2007.

[18] V. Raghunathan, C. Schurgers, S. Park, M. B. Srivastava, Energy-aware wireless
microsensor networks, IEEE Signal Processing Magazine 19 (2) (2002) 40–50.

[19] C. Rodriguez, A computational environment for data preprocessing in
supervised classifications, Master’s thesis, University of Puerto Rico, Mayaguez
(Jul. 2004).

[20] H. D. Schwetman, Introduction to process-oriented simulation and CSIM, in:
Proceedings of the ACM Winter Simulation Conference, 1990.

[21] H. D. Schwetman, CSIM 19: A powerful tool for building systems models, in:
Proceedings of the ACM Winter Simulation Conference, 2001.

[22] M. A. Sharaf, J. Beaver, A. Labrinidis, P. K. Chrysanthis, Balancing energy
efficiency and quality of aggregate data in sensor networks, The VLDB Journal
13 (4) (2004) 384–403.

[23] S.-H. Son, M. Chiang, S. R. Kulkarni, S. C. Schwartz, The value of clustering
in distributed estimation for sensor networks, in: Proceedings of the IEEE
International Conference on Wireless Networks, Communications, and Mobile
Computing (WirelessCom), 2005.

[24] S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, Infrastructure tradeoffs for
sensor networks, in: Proceedings of First ACM International Workshop on
Wireless Sensor Networks & Applications, 2002.

[25] C.-Y. Wan, S. B. Eisenman, A. T. Campbell, Coda: congestion detection and
avoidance in sensor networks, in: ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

30

[26] D. J. Yates, E. Nahum, J. Kurose, P. Shenoy, Data quality and query cost
in pervasive sensing systems, in: IEEE International Conference on Pervasive
Computing and Communications (PerCom), 2008.

[27] D. J. Yates, Scalable data delivery for networked servers and wireless sensor
networks, Ph.D. thesis, Department of Computer Science, University of
Massachusetts, Amherst, MA (Feb. 2006).

[28] Y. Yu, B. Krishnamachari, V. K. Prasanna, Energy-latency tradeoffs for data
gathering in wireless sensor networks, in: Proceedings of the Conference on
Computer Communications (IEEE Infocom), 2004.

[29] J. Zhao, R. Govindan, Understanding packet delivery performance in dense
wireless sensor networks, in: ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2003.

31

