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Abstract— In this paper we present simple stochastic differen-
tial equations that lead to lower-tail and/or upper tail power law
behaviors. We also present a model with bi-directional Poisson
counters that exhibits power law behavior near a critical point,
which might be of interest to statistical physics.

I. INTRODUCTION

It has been observed many times in recent years that
empirical studies dealing with a variety of subject matter
produce data showing power law histograms extending over
several decades or more. The diversity of application areas,
and the extent of the data have inspired researchers to look
for general principles that would make it possible to trace the
individual phenomena back to one or more common features.
Among recent work along these lines we call attention to [1],
[4], [5], [6]. The behavior of a distribution F (x) as x→ ∞
is referred to as the upper tail behavior. When the distribution
has its support lower bounded by B, its behavior as x ↓ B is
referred to as the lower tail behavior. In this paper we pursue
the idea that certain simple forms of first order stochastic
differential equations have steady state densities which show
lower tail and/or upper tail power law behaviors, depending
on the values of the parameters. To the extent that the form
and parameters of a differential equation are often more
readily identified in the modeling process, the differential
equations we describe may be thought of as providing a more
direct explanation of power law behavior.

In their interesting paper [6], Reed and Hughes consider
the probability density of the value of an exponentially
growing quantity sampled at an exponentially distributed
random time. They observe that this generates a power law
distribution. Here we consider a different situation involving
the steady state density associated with a stochastic differen-
tial equation. The equation describes a situation in which the
quantity of interest decays to zero exponentially, Ẋ = −αX ,
but is incremented by a fixed amount σ at random times, the
times having an exponential distribution. We show that for
a range of parameter values the steady state distribution of
X exhibits a power law lower tail close to zero, which is
the lower end of its range. The fact that we deal with the
steady state property of an ongoing dynamics gives our work
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a different set of possibilities for interpretation. The basic
reason as to why the distribution of values in steady state
has the same form as the distribution of values obtained by
sampling at a random time, lies in the form of the drift term
associated with the differential equation.

The lower tail behavior is of interest when we deal with
a quantity that is intrinsically bounded from below, such
as queue length. Our models for lower tail behavior fo-
cuses on the steady state behavior associated with stochastic
differential equations (SDEs) containing a Poisson counter
N and taking the form Our models for the lower tail
behavior focuses on the steady state behavior associated with
stochastic differential equations (SDEs) containing a Poisson
counter N and taking the form

dX = f(X)dt+ g(X)dN.

A different but related situation is that the range of the
quantity of interest extends in both directions from a critical
value, as might be the situation for some types of populations
near a phase transition. For behaviors near a critical point,
we consider slightly more complicated models of the form

dX = f(X)dt+ g1(X)dN1 − g2(X)dN2.

We also study the more popular case of upper tail power
law as the value of the quantity of interest goes to infinity. A
simple transformation is shown to convert lower tail power
laws into upper tail power laws, which also correspond to
steady state densities of SDEs. In our view, these SDEs
provide suitable generative interpretations of many power
law upper tails observed in real data.

In Section II we first present our motivating example
of a simple Poisson counter driven SDE (PCSDE), the
steady-state distribution of which was shown by Brockett
[1] to exhibit power law behavior near the origin. We then
introduce a simple transformation of this PCSDE to develop
an SDE that leads to an upper tail power law. We observe
that a variety of distributions can be generated via simple
modifications of the “drift term” in the SDE. In Section III,
we add a Brownian motion term to obtain a similar result
as Reed [5]. All of these cases demonstrate that random
multiplication with exponential stopping time leads to power
law behaviors. In Section IV we develop an SDE driven by
Poisson counters in both positive and negative directions. We
show that the steady-state distribution can exhibit power law
behavior near a critical point. This may have implications in
statistical physics since a discontinuity occurs in a surprising
way. Section V concludes the paper.



II. SDE DRIVEN BY A POISSON COUNTER

The following SDE was considered by Brockett [1],

dXt = −αXtdt+ σdNt, (1)

where α, σ > 0 and N is a Poisson process of intensity
λ. By Theorem 6.2 in [2], there is a unique adapted RCLL
(right-continuous with left limits, or, càdlàg) process {Xt}
satisfying (1) and

sup
t∈[0,T ]

E[X2
t ] <∞ (2)

for any T ∈ [0,∞). Similar arguments for the existence
of solutions apply to all the other SDE’s considered in this
paper and will not be repeated.

Now let ψk(x) = eikx, k ∈ R. By Itô’s formula,

dψk(Xt) =− iαkXtψk(Xt)dt
+ [ψk(Xt− + σ)− ψk(Xt−)]dNt

=− αk
∂ψk(Xt)

∂k
dt+ (eikσ − 1)ψk(Xt−)dNt.

Taking expectations,

∂

∂t
ΦX(k, t) = −αk ∂

∂k
ΦX(k, t)+λ(eikσ−1)ΦX(k, t), (3)

where ΦX(k, t) = E[ψk(Xt)] is the characteristic function
of Xt and the change of the order of differentiation and
expectation can be justified by (2) and Lebesgue’s Dominated
Convergence Theorem. Equation (3) can be solved by the
method of characteristics (see e.g. [3]) to yield

ΦX(k, t) = ΦX(ke−αt, 0) exp

{
λ

∫ t

0

[
eikσe

α(s−t)

− 1
]

ds
}
.

(4)
After a change of variable u = σ exp(α(s−t)), (4) becomes

ΦX(k, t) = ΦX(ke−αt, 0) exp

{
λ

α

∫ σ

σe−αt

eiku − 1

u
du

}
,

(5)
yielding

ΦX(k,∞) = exp

{
λ

α

∫ σ

0

eiku − 1

u
du

}
.

This result can also be obtained as a consequence of Theorem
2 of [10]. By Lemma 53.2 of [7], the steady-state distri-
bution is absolutely continuous with continuous density on
(0,∞). Moreover, the density is continuously differentiable
on (0,∞) if λ > α.

Note that ΦX(k,∞) satisfies the following equation, ob-
tained from (3) by setting the right-hand side to zero,

−αk d
dk

Φ(k) + λ(eikσ − 1)Φ(k) = 0.

Thus the corresponding density fX(x) satisfies

α
d

dx
[xf(x)] + λf(x− σ)− λf(x) = 0. (6)

It was shown in [9] that fX(x) = 0 for x < 0. We can
arrive at the same conclusion in a more intuitive way by
examining (1). Indeed, note that, in spite of its initial value,

X will eventually become positive and remain so from that
point on. Now using fX(x) = 0 for x ≤ 0, (6) can be solved
recursively to give

fX(x) = Cx
λ
α−1, x ∈ (0, σ],

and, for x ∈ (nσ, nσ + σ], n ≥ 1,

fX(x) = fX(nσ)
( x

nσ

) λ
α−1

−λ
α
x

λ
α−1

∫ x

nσ

u−
λ
α fX(u−σ)du,

where the constant C is determined by the normalization
condition ∫ ∞

−∞
fX(x)dx = 1.

Note that fX(x) has a power law at its lower tail.
We briefly mention that (1) has the following generaliza-

tion,
dXt = AXtdt+ bdNt,

where X is an Rn-valued process, A an n×n stable matrix
and b ∈ Rn. Then the steady-state distribution has the
following characteristic function

ΦX(k,∞) = exp

{
λ

∫ ∞

0

[
exp

(
ikT eAsb

)
− 1

]
ds
}
,

where k ∈ Rn, and the projection of X onto a left
eigenvector of A exhibits power law near the origin.

Now we introduce the simple transformation Yt = X−1
t

to convert the lower tail power law into an upper tail power
law. For y ≥ ε ≜ σ−1, the steady-state density of Y is

fY (y) = fX(y−1)y−2 = Cy−
λ
α−1, y ∈ [ε,∞).

Using Itô’s formula, we obtain the equation governing the
evolution of Yt,

dYt = αYtdt−
Y 2
t−

ε+ Yt−
dNt, (7)

Note that at each jumping point, Y drops to εYt−
ε+Yt−

, which
depends on Yt−.

We can modify the coefficient in front of dNt in (7) so that
it always restores the process to a fixed point. The equation
then becomes

dZt = αZtdt+ (z0 − Zt−)dNt, (8)

with the corresponding equation for the characteristic func-
tion ΦZ(k, t) of Zt being

∂

∂t
ΦZ(k, t) = αk

∂

∂k
ΦZ(k, t)− λΦZ(k, t) + λeikz0 . (9)

Equation (9) can be solved again by the method of charac-
teristics, yielding

ΦZ(k, t) =e
−λtΦZ(ke

αt, 0)

+ λ

∫ t

0

exp
{
λ(s− t) + iz0ke

α(t−s)
}
ds.

(10)



After a change of variable z = z0e
α(t−s), (10) becomes

ΦZ(k, t) = e−λtΦZ(ke
αt, 0)+

λ

αz0

∫ z0e
αt

z0

(
z

z0

)− λ
α−1

eikzdz,

from which we can read off the distribution function,

FZ(z, t) = e−λtFZ(ze
−αt, 0) + (1− e−λt)G(z, t),

where G(z, t) is a truncated Pareto distribution,

G(z, t) =


0, z < z0,

1
1−e−λt

[
1−

(
z
z0

)− λ
α

]
, z0 ≤ z ≤ z0e

αt,

1, z > z0e
αt.

As t → ∞, the distribution FZ(z, t) approaches a Pareto
distribution

FZ(z,∞) = 1−
(
z

z0

)− λ
α

, z ≥ z0.

A closely related model of deterministic exponential
growth with exponential stopping time was analyzed in [6].
We note by passing that the proportional growth is critical
in generating a power law. Had the growth term in (8)
been αZδ

t dt for some δ ∈ [0, 1), the resulting distribution
would have been a left truncated Weibull distribution with
distribution function

FZ(z,∞) = 1−exp

{
− λ

α(1− δ)
(z1−δ − z1−δ

0 )

}
, z ≥ z0.

III. SDE DRIVEN BY BOTH BROWNIAN MOTION AND
POISSON COUNTER

In this section, we add a Brownian motion component to
(8), which becomes

dXt = µXtdt+ σXtdWt + (x0 −Xt−)dNt, (11)

where µ, x0 ∈ R, σ > 0, W is a standard Brownian motion
and N is a Poisson process with density λ, independent of
W . This is a geometric Brownian motion with Poisson jumps
which always reset the motion to a fixed state x0. A similar
model was analyzed in Reed [5].

Let Yt = logXt and y0 = log x0. Then Itô’s formula gives

dYt =
(
µ− 1

2
σ2

)
dt+ σdWt + (y0 − Yt−)dNt,

which is a Brownian motion randomly reset to y0 by Poisson
jumps. Let ψk(y) = eiky as in the previous section. By Itô’s
formula,

dψk(Yt) = ikψk(Yt)

[(
µ− 1

2
σ2

)
dt+ σdWt

]
− 1

2
σ2k2ψk(Yt)dt+ (eiky0 − ψk(Yt−))dNt.

Taking expectations, we get

∂

∂t
ΦY (k, t) =

[
i

(
µ− 1

2
σ2

)
k − 1

2
σ2k2 − λ

]
ΦY (k, t)

+ λeiky0 ,

where ΦY (k, t) is the characteristic function of Yt. The
solution is

ΦY (k, t) = ΦY (k,∞)

+ e−λt[ΦY (k, 0)− ΦY (k,∞)]ei(µt−
1
2σ

2t)k− 1
2σ

2tk2

,

where

ΦY (k,∞) =
−λeiky0

i(µ− 1
2σ

2)k − 1
2σ

2k2 − λ
.

Now we can find the steady-state density of Yt as t → ∞
by taking the inverse Fourier transform of ΦY (k,∞),

fY (y) =

{
αβ
α+β e

β(y−y0), y ≤ y0,
αβ
α+β e

−α(y−y0), y ≥ y0,

where α > 0 and −β < 0 are the two roots of the following
quadratic equation,

1

2
σ2γ2 +

(
µ− 1

2
σ2

)
γ − λ = 0. (12)

Going back to X , we get the steady-state density of Xt as
t→ ∞

fX(x) = fY (log x)x
−1

=

x
−1
0

αβ
α+β

(
x
x0

)β−1

, x ∈ (0, x0],

x−1
0

αβ
α+β

(
x
x0

)−α−1

, x ∈ [x0,∞).
(13)

which is the double Pareto distribution of Reed [5].
Motivated by the connection between (7) and (8), we also

consider the following SDE

dZt = µZtdt+ σZtdWt −
Z2
t−

Zt− + ε
dNt, (14)

with Z0 > 0. Let Ut = Z−1
t . Then, by Itô’s formula,

dUt = −(µ− σ2)Utdt− σUtdWt + ε−1dNt.

By the same procedure as before, we get the equation for
the characteristic function ΦU (k, t) of U ,

∂

∂t
ΦU (k, t) =− (µ− σ2)k

∂

∂k
ΦU (k, t)

+
1

2
σ2k2

∂2

∂k2
ΦU (k, t) + (eik/ε − 1)ΦU (k, t),

which is the Fourier transform with respect to the variable
y of the following Fokker-Planck equation for the density
fY (y, t) of Yt,

∂

∂t
fY (y, t) = (µ− σ2)

∂

∂y
[yfY (y, t)] +

1

2
σ2 ∂

2

∂y2
[y2fY (y, t)]

+ λfY (y − ε−1, t)− λfY (y, t).

In steady state, the density fY (y) satisfies

(µ− σ2)
d

dy
[yfY (y)] +

1

2
σ2 d2

dy2
[y2fY (y)]

+ λfY (y − ε−1)− λfY (y) = 0.



For y ∈ (0, ε−1], this reduces to

(µ− σ2)
d

dy
[yfY (y)] +

1

2
σ2 d2

dy2
[y2fY (y)]− λfY (y) = 0.

(15)
The general solution to (15) is given by

fY (y) = Cyα−1 +Dy−β−1, y ∈ (0, ε−1],

where α and β are as in (13). The integrability of fY (y)
requires that D = 0, so

fY (y) = Cyα−1, y ∈ (0, ε−1].

Therefore,

fX(x) = fY (x
−1)x−2 = Cx−α−1, x ∈ [ε,∞),

which has the same upper tail power law exponent as in (13).
This is intuitive since the difference of the two models lies
in the range of small x. In fact, both (11) and (14) have the
same general form

dXt = µXtdt+ σXtdWt + [g(Xt−)−Xt−]dNt, (16)

where 0 < g(·) < B is bounded. The density of Xt satisfies
the same Fokker-Planck equation for x ∈ (B,∞),

∂

∂t
fX = − ∂

∂x
(µxfX) +

1

2

∂2

∂x2
(σ2x2fX)− λfX .

Therefore, the upper tail of the steady state density has the
same functional form, independent of g(·). By taking the
limit σ → 0, we observe that the remark here also applies
to (7) and (8).

We note also the possibility of extending (16) to the
multivariate case,

dXi = µiXidt+σiXidWi+
∑
j

[gij(X−)−Xi−]dNj , (17)

where we have omitted the subscript t. As in (16), each
Xi has a power law upper tail. Thus (17) generates a set
of correlated random variables with power law marginal
distributions.

IV. SDE DRIVEN BY BI-DIRECTIONAL POISSON
COUNTERS

In this section, we consider the following SDE driven by
bi-directional Poisson counters,

dXt = α(µ−Xt)dt+ σ1dMt − σ2dNt,

where µ ∈ R, α, σ1, σ2 > 0, and M,N are two independent
Poisson processes with intensities λ1, λ2, respectively. By a
simple shift of the origin, we may assume without loss of
generality that µ = 0 and the equation then becomes

dXt = −αXtdt+ σ1dMt − σ2dNt. (18)

The characteristic function ΦX(k, t) satisfies the following
equation,

∂

∂t
ΦX(k, t) =− αk

∂

∂k
ΦX(k, t)

+
[
λ1(e

ikσ1 − 1) + λ2(e
−ikσ2 − 1)

]
ΦX(k, t),

(19)

the solution to which is

ΦX(k, t)

=ΦX(ke−αt, 0)e
λ1
α

∫ σ1
σ1e−αt

eiku−1
u du−λ2

α

∫ −σ2e−αt

−σ2

eiku−1
u du

.

Therefore,

ΦX(k,∞) = e
λ1
α

∫ σ1
0

eiku−1
u du−λ2

α

∫ 0
−σ2

eiku−1
u du

.

This result can also be obtained using Theorem 17.5 of [7].
Lemma 2 of [8] shows that ΦX(k,∞) is the characteristic
function belonging to an absolutely continuous distribution
and the density is continuous if and only if λ1 + λ2 > α. If
λ1 = λ2 = λ and σ1 = σ2 = σ, the steady-state distribution
will be symmetric around the origin. If, in addition, σ =
σ0λ

− 1
2 , then as λ → ∞, (18) converges to the Ornstein-

Uhlenbeck process and

ΦX(k,∞) → exp

{
−σ2

0

2α
k2

}
,

i.e. the characteristic function of the normal distribution
N (0,

σ2
0

α ), as expected.
Setting the right-hand side of (19) to zero, we get the

differential equation satisfied by ΦX(k,∞),

αk
d

dk
ΦX(k, t) =

[
λ1(e

ikσ1 − 1) + λ2(e
−ikσ2 − 1)

]
ΦX(k, t).

Thus the steady-state density satisfies the following equation,

α
d

dx
[xf(x)]+λ1f(x−σ1)−(λ1+λ2)f(x)+λ2f(x+σ2) = 0.

(20)
Figure 1 shows some steady-state densities for (18) ob-

tained from simulation, where we have set σ1 = σ2 = 1 and
λ1 = λ2. Note that as λ1+λ2

α becomes larger, the density
becomes smoother, consistent with Lemma 2 of [8]. As
λ1+λ2

α becomes smaller, the density becomes more sharply
concentrated around zero. In the case λ1+λ2 ≪ α, f(x−σ1)
and f(x + σ2) are negligible compared to f(x) for small
x and, hence, (20) can be approximated by the following
equation,

α
d

dx
[xf(x)]− (λ1 + λ2)f(x) = 0.

which can then be solved to give

f(x) = C|x|
λ1+λ2

α −1, 0 < |x| ≪ 1.

Figure 2 plots the steady-state densities in log-log scale with
the reference lines of slope λ1+λ2

α − 1 superimposed. The
approximation is very good near the origin.

This approximation can be made more rigorous using
Theorem 53.8 of [7]. We will present a simplified and more
straightforward analysis of the behavior of the density near
the origin when λ1 + λ2 ≤ α. Let

Φ1(k) = exp

{
λ1
α

∫ σ1

0

eiku − 1

u
du

}
and

Φ2(k) = exp

{
−λ2
α

∫ 0

−σ2

eiku − 1

u
du

}
,
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Fig. 1. Steady-state densities of X in (18); σ1 = σ2 = 1, λ1 = λ2.
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Fig. 2. Log-log plot of steady-state densities of X in (18); σ1 = σ2 = 1, λ1 = λ2. The reference straight lines have a slop of λ1+λ2
α

− 1.

which are the characteristic functions of two absolutely
continuous distributions. Denote their densities by g(x) and
h(x), respectively. Then [8] shows that g(x) has support
on [0,∞) and g(x) = Cx

λ1
α −1 for x ∈ (0, σ1]. Similarly,

h(x) has support on (−∞, 0] and h(x) = D|x|
λ2
α −1 for

x ∈ [−σ2, 0). Since ΦX(k,∞) = Φ1(k)Φ2(k), the density
f(x) corresponding to ΦX(k,∞) is given by

f(x) =

∫ ∞

−∞
g(y)h(x− y)dy.

Let m = min{σ1, σ2} and ϵ ∈ (0,m). For 0 < x ≤ m − ϵ,

we have

f(x) =

∫ ∞

x

g(y)h(x− y)dy

=

∫ m

x

Cy
λ1
α −1D(y − x)

λ2
α −1dy

+

∫ ∞

m

g(y)h(x− y)dy

= CDx
λ1+λ2

α −1

∫ m
x

1

u
λ1
α −1(u− 1)

λ2
α −1du

+

∫ ∞

m

g(y)h(x− y)dy

= A1x
λ1+λ2

α −1 +A2,



where A1 = CD
∫ m

x

1
u

λ1
α −1(u − 1)

λ2
α −1du and A2 =∫∞

m
g(y)h(x−y)dy. It is shown in [9] that g(x) is continuous

on R \ {0} and g′(x) ≤ 0, so it is uniformly bounded on
[m,∞) and hence

A2 ≤ sup
y≥m

g(y)

∫ ∞

m

h(x− y)dy ≤ sup
y≥m

g(y) <∞.

If λ1 + λ2 < α, then

A1 ≥ CD

∫ m
m−ϵ

1

u
λ1
α −1(u− 1)

λ2
α −1du > 0

and

A1 < CD

∫ ∞

1

u
λ1
α −1(u− 1)

λ2
α −1du <∞.

A similar analysis applies for the case x ∈ (−m + ϵ, 0).
Therefore,

f(x) = Θ
(
|x|

λ1+λ2
α −1

)
, as x→ 0.

If λ1 + λ2 = α,

A1 = CD

∫ m
x

1

u
λ1
α −1(u− 1)

λ2
α −1du

≥ CD

∫ m
x

1

u
λ1
α −1u

λ2
α −1du = CD log

m

x
,

and for x ≤ m
2 ,

A1 = CD

∫ m
x

1

u
λ1
α −1(u− 1)

λ2
α −1du

≤ CD

∫ 2

1

(u− 1)
λ2
α −1du+ CD

∫ m
x

2

u
λ1
α −1

(u
2

)λ2
α −1

du

= CD
α

λ2
+ CD21−

λ2
α log

m

2x
.

A similar analysis applies for x < 0. Therefore,

f(x) = Θ(− log |x|), as x→ 0.

V. CONCLUSIONS

We presented some simple stochastic differential equations
that lead to lower tail and/or upper tail power law behaviors.
Some of the results are known but the derivations are
different. We also presented a model with two opposite
Poisson counters and an exponential decaying term. This
model exhibits power law behavior near a critical point,
which might be of interest to statistical physics.
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