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Abstract—Estimating characteristics of large graphs via
sampling is a vital part of the study of complex networks.
In this work we present an in-depth study of the Mean
Squared Error (MSE) of sampling methods such as indepen-
dent random vertex (RV) and random edge (RE) sampling
and crawling methods such as random walks (RWs), a.k.a.
RDS, and the a Metropolis-Hastings algorithm whose target
distribution is to uniformly sample vertices (MHRWu). This
paper provides an upper bound for the MSE of a stationary
RW as a function of the MSE of RE and the absolute value
of the second most dominant eigenvalue of the RW transition
probability matrix. We see that RW and RV sampling are
optimal in respect to different weighted MSE optimizations
and show when RW is preferable to RV sampling. Finally,
we present an approximation to the MHRWu MSE. We
evaluate the accuracy of our approximations and bound using
simulations on large real world graphs.

1. INTRODUCTION

A number of recent studies [2], [4], [7], [8], [12], [13],
[15], [21], [16], [17], [22] (to cite a few) are dedicated to the
characterization of network graphs. This paper represents
a network as an undirected graph with labeled vertices
and edges. Network characteristics of interest include the
degree distribution, the average number of copies of a file
in a peer-to-peer (P2P) network [8], [21], the assortativity
coefficient [18], or the global clustering coefficient [18].

Characterizing graphs requires querying vertices and/or
edges; each query has an associated resource cost (time,
bandwidth, money). Querying the whole graph is often too
costly. As a result, researchers have turned their attention to
the estimation of graph characteristics based on incomplete
(sampled) data.

RV sampling: In networks where each vertex is as-
signed a unique user-id (e.g., travelers and their passport
numbers, Facebook, MySpace, Flickr, and Livejournal) a
widespread practice is to perform random vertex (RV) sam-
pling by querying randomly generated user-ids. However,
uniform RV sampling may be undesirable when the user-id
space is sparsely populated (in MySpace the ratio between
the number valid users retrieved and the total number of
queries is 10% [17]). Moreover, queries are often subject to
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resource constraints (e.g., queries are rate-limited in Flickr,
Livejournal [15], and Bittorrent [11]). As we see in this
work, even when RV sampling is not severely resource-
constrained, some characteristics may be better estimated
with other sampling methods (e.g., the tail of the degree
distribution of a graph).

RE sampling: In independent Random Edge (RE)
sampling, a vertex is sampled by first sampling an edge
independent and uniformly from the set of edges, and then
randomly choosing one of the edge end points. In practice
one should use both end points of a sampled edge. However,
in order to simplify our analysis, we consider just one sam-
pled vertex for each sampled edge. In real world networks,
randomly sampling edges can be harder than randomly
sampling vertices. Edges are not often associated to unique
IDs that can be queried and online social networks such
as Facebook, Twitter, MySpace, Livejournal, and Flickr,
among others, do not provide an API that allows randomly
sampling of edges.

RW sampling: An alternative, and often cheaper, way
to sample a network is by means of a random walk
(RW). RW sampling is preferred to other types of graph
crawling, such as the breadth-first crawling used in [15],
as one can obtain asymptotically unbiased estimates of a
number of graph characteristics such as fraction of vertices
with a given label [22], the degree distribution [22], and,
more recently, assortativity and global clustering coeffi-
cients [18]. A RW samples a graph by moving a particle
(walker) from a vertex to a neighboring vertex (over an
edge). The probability by which the walker selects the next
neighboring vertex determines the probability by which
vertices and edges are sampled. We denote standard RW or
just RW a random walk that sample neighbors uniformly.
A Metropolis-Hastings walker, as seen later, selects the
next neighboring vertex using a different rule. RWs are
popular for sampling networks [7], [16], [22] in oder to
estimate their characteristics. One of the reasons behind
the popularity of RW sampling is that it does not query
invalid users unlike RV sampling.

MHRW sampling: The Metropolis-Hastings Random
Walk (MHRW) is an accept-reject random walk-based
sampling process that samples vertices according to a target
distribution ~y. In this work we are mostly interested in a



MHRW that samples vertices uniformly, which we denote
MHRWu. MHRWu have been used to uniformly sample
peers in peer-to-peer networks [21] and Web pages [9].
Unfortunately, MHRWau is empirically known to have large
estimation errors compared to RW estimates [7].

Contributions

This paper presents the following contributions:

1) In Section IIT we prove that the Mean Squared Error
(MSE) obtained by a stationary sequence of n RW
sampled vertices is upper bounded by the MSE of
n RE sampled vertices divided by (1 — «), where «
is the absolute value of the second most dominant
eigenvalue of the RW transition probability matrix.

2) We present the graph sampling problem as the min-
imization of a weighted MSE sum. We illustrate
our approach using the degree distribution as an
example. For the degree distribution we see that
RW sampling minimizes the MSE whose weights
are the vertex degree squared (i.e., the weights give
more importance to large degree vertices); while RV
sampling minimizes the MSE with equal weights.

3) RW estimates have been observed to be more accu-
rate than estimates obtained by MHRWu [7], [16].
We study how the Metropolis-Hastings mechanism
tends to induce larger estimation errors than RW and
RV sampling.

Outline

The outline of this work is as follows. Section II presents
definitions used in this paper. Section III presents an upper
bound of the MSE of RW sampling as a function of the
MSE of RE sampling and «, the absolute value of the
second most dominant eigenvalue of the RW transition
probability matrix. In Section IV we present the graph
sampling problem as minimizing the weighted MSE sum.
In Section V we study how the Metropolis-Hastings mech-
anism tends to induce larger estimation errors than RW or
even RV sampling. Section VII present simulation results
that help corroborate our theoretical analysis. And finally
Section IX presents our conclusions.

II. DEFINITIONS

Let G = (V, E) be an undirected connected non-bipartite
graph and let d,, a € V, be the degree of vertex a. We

A .
denote vol(V') = 3\ .y d,. We want to estimate

F=>" f(v). (1)
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from a sequence of vertices sampled from G. Let
(Z1,...,Zy,) be a stationary sequence of n sampled ver-
tices, where P[Z; =v] =8, > 0,Yv e V,t=1,...,n.
Then

n
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F(Zl,...,Zn)éEzfﬁ(zt),ZieV,izl,...,n. )
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is an unbiased estimate of eq.(1). The estimator F' in
eq.(2) is widely used to estimate F', see [18], [22] and
the references therein.

The Mean Squared Error (MSE) of F(Zy,...,Zy) is

E(F(Z1,..., Zy) — F)? =var(F(Z1, ..., Zn)), (3

as E[F(Zy,...,Z,) = F.

III. A TIGHT UPPER BOUND OF THE RW ESTIMATION
ERROR

Random walk (RW) sampling and random edge (RE)
sampling are closely related. Let 7 = (7, : @ € V'), denote
the steady state probability distribution of the RW. A RW is
time reversible, i.e., m,/d, = 7, /dy [14]. A consequence
of time reversability is that edges are sampled with equal
probability, 1/|E|. Thus, RW and RE differ only that edges
sampled by a RW samples are correlated.

In what follows we present a tight upper bound of the
MSE of a stationary RW. More precisely, let (X1,...,X,,)
be a sequence of n vertices sampled by a stationary RW.
A RW is stationary iff Xy ~ . Let (Y7,...,Y),) be a
sequence of RE sampled vertices. We show that the MSE,
eq.(3), of (Xy,...,X,,) is upper bounded by a function of
the MSE of (Yi,...,Y,) and o, where 0 < o < 1 is the
absolute value of the second most dominant eigenvalue of
the RW transition probability matrix.

In what follows we define the magnitude of the second
most dominant eigenvalue of the RW. Let A = [a;;],1 =
1,...,|V], be the adjacency matrix of G, a;; = 1 iff
(vi,v5) € E, otherwise a;; = 0. Let
dy, - 0
D=| : .
0 o dyy,
be a diagonal matrix whose diagonal elements are the
degrees of the vertices in G. Let P = D ! A be the one-
step RW transition probability matrix. The probability that
a RW reaches vertex v from u in ¢ steps is

(t) — (Pt)uv .

uv

The stationary distribution of the RW is m = Pw. Let
A1 > Ay > -+ > Ay be the eigenvalues of P. It
follows from the fact that G is an undirected connected
non-bipartite graph (and P is a stochastic matrix) and the



Frobenius-Perron Theorem that 1 = Ay > Ay > .-+ >
/\IV\ > —1 [14]. The absolute value of the second most
dominant eigenvalue is defined as

al max(Az, —Ajy). “4)

A RW is fast mixing when « is sufficiently small (we
choose to use a vague definition of fast mixing as there
are many contradicting definitions of “fast mixing” in the
literature).

In the following theorem (Theorem III.1) we show that
the estimation error of a RW can be upper bounded by the
estimation error of RE sampling and a.

Theorem IIL1. Let G = (V,E) be an undirected con-
nected non-bipartite graph. Let (Xi,...,X,) be a se-
quence of vertices sampled by a stationary RW on G,
n > 1. Let (Y1,...,Y,) be a sequence of RE sampled
vertices. Let

R 1~ f(Z
F(Zy,...,7,) 2 —Zf( ) L Z;eVi=1,...,n
n =1 Tz,
and let a be the absolute value of the second most dominant
eigenvalue of the RW transition probability matrix.
Then

var(F( X1, ..., X)) < var(F Efi_a)

Proof- Let S = w'/2Px'/2 1t is easy to verify that S
is a |V| x |[V| symmetric matrix whose eigenvalues are also
the eigenvalues of P. The eigenvector of S corresponding
to eigenvalue \; = 1 is 7w'/2. The Courant-Fischer theo-
rem [10, Theorem 4.2.11, pp. 179] gives the second largest
eigenvalue of S

' Yn))

S)

max ZV’UGV ZVuEV w(“);ﬂ(u)ﬁvpv,u 6)
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and the smallest eigenvalue of S

2 wwev 2ovuev W(O)w(U)Typy
ZVUEV w(v)?m,

as (w,m) = (r,7/?) = Yypey o, v = (w(vs) 7
i=1,....|V]).

Let g(v) = f(v)/my — F, which yields E[g(X;)] = 0,
i =1,...,n. In what follows we an upper and lower bound
of the covariance of g(X;) and g(X3), t = 2,...,n. Con-
sider the following definitions of covariance and variance:
Forl<t<n

cov(g(X1),9(X) = Y Y g)g(wmp?,

YoeV YueV

Ay =

min
w: (w,m)=0

Alv = ., (D

and

var(g(X,) £ 3 g(w)?m,,i=1,....n.

YueV

The bounds are found by replacing the above definitions
into eqs.(6) and (7)

cov(g(X1),9(X2))
A2 2 T (XL

Let a = max(Az, —Ajy|), as defined in eq.(4). Then

S cov(g(X1),9(X2))
var(g(X1))

As A and Ay, are eigenvalues of P* and var(g(X1)) > 0,
we have that

a var(g(X1)) > cov(g(X1). g(Xy)) - ®)

A known property of the variance is [19, pp. 265]

var (% Z Q(Xi)> :%var(g(Xl))—i-

% Z = tcov(g(X1)7g(Xt)) :

n
9

>Ny -

Applying eq.(8) into eq.(9) yields

ot (14 25 -

1+ a
= X1)————
Var(Q( 1))n(1 —Oé)
_ var(g(1)
n(l—a)’
as 0 <a<l,
Xn:nft . a 202 —a® — "t
o = —
— Y
~ n 11—« n(l — «)

and 202 — a® — ™t > 0.
The proof is concluded by noting that

Lvar(g(x1)) = %Var(ﬁ(Yl)) —var(F(Va, ..., Y2))

n
and that

var (% Z g(XZ-)> = var(F(Xy,...,X,)).

|
The above proof is valid for any value of a. The upper
bound in Theorem IIL1 is tight as o = Az = Ay = 0
yields cov(g(X1),9(X¢)) = 0, t > 1. Eq.(9) implies
var(F(X1,...,X,)) = var(F(Y1,...,Y,)). Hence, the
MSE of a fast mixing RW can be approximated by the MSE
of RE, but only for small enough values of a. Otherwise,
we need to use the upper bound in Theorem IIL.1.



IV. MSE MINIMIZATION

In Section III we provided an upper bound for the RW
MSE. So far we considered a RW that samples v € V' pro-
portional to d,, i.e., vertices are sampled from distribution
7. In what follows we denote this type of random walk
“standard RW”.

There are many different ways to sample a graph (e.g.,
RE, RV, standard RW). In this section we are interested
in sampling the graph as to minimizes a given weighted
sum of the MSE. The motivation behind this section
comes from the several types of stationary RWs that
sample vertices, (X;)P_,, with (an arbitrary) distribution
Xi~v,i=1,...,n (e.g., Metropolis-Hastings algorithm,
Gibbs [19] sampler, and weighted RW are three of such
RW types). In Theorem III.1 we proved that the MSE
of a standard RW is upper bounded by the MSE of RE
sampling times a constant that depends on the graph.
Unfortunately, Theorem III.1 cannot be easily extended
to v # w. Thus, we make the simplifying assumption of
independence in (X;)"_,. For MHRWu the independence
assumption means that vertices are RV sampled. For RW
the independence assumption means that vertices are RE
sampled. In our simulations in Section VII we see that the
independence assumption gives a good approximation for
RWs (specially if vertices are sampled by our proposed
RW, frontier sampling, described in Section VI) and a bad
approximation for MHRWu.

To illustrate the optimization, consider estimating the
degree distribution, 64, d = 0,1, ...,

1
04 é - fd v),
nv@ze:v )
where fq(v) = 1(d, = d)/|V| and 1(d, =d) =1 if d, =
d and zero otherwise, from a sequence of i.i.d. sampled
vertices, (Y1,...,Y,), where Y; ~ v, i = 1,...,n. Note
that

is an unbiased estimate of 6. To simplify our analysis we
assume that the probability of sampling vertex v € V' only
depends on d,, the degree of v, i.e., v, = I'q, > 0. From

the independence of Y;, i =1,....n,
N 1 v 2
EUFathh. . Y) - Rl = ( 3 (242) s, 03
n YveVv To

Let v* be the distribution that minimizes the weighted MSE

0
v* = arg, minz (F_d — 03) Wy ,
va 4

wy >0, veV.

Lemma IV.l. The distribution T'* that minimizes the

weighted MSE

04
* . 2
I'* = argp min \_/,Ed <—Fd 9d> Wy ,

with weights {w;} satisfies the following relation

=7,
Proof: As 'y, d = 1,2,..., is a distribution we add

the restriction >, ,I'q = 1 as a Lagrange multiplier in the
optimization, which results in the set of equations:

0
Z(F—d—03>wd—A<ZFd—1),VueV
d vd

vd

Taking the derivative of h(d) with respect to I'y and

equating to zero yields
oh(d) 1
Oy

Wy
wj

h(d)

I

ae(r)
wj  \I;
2
All is left is to prove that Z)’—; = (;—j) is not a saddle

point of h(d). This is easy as 9*h(d)/0°Ty = 2/T3 > 0.
|

A =0, Vd,

thus

In particular, I'y o< d gives
wj :w](l/])z v, J=1,2,....
Note that w; > w; when ¢ > j and w; < w; when d; < d;.
Thus, a standard RW and RE sampling optimize a weighted
MSE that places larger weights at the tail of the degree
distribution. Another particular case occurs when I'; =I';,
Vi, j:
Wy = Wy, , YU, v €V,

i.e., RV sampling optimizes a weighted MSE with equal
weights.

Degree distribution: RW v.s. RV sampling

The NMSE is the Normalized Mean Square Error, de-
fined as VMSE/F, where F is the true value. Let d be
the average degree. From the exposition in Section IV it is
straightforward to show that the NMSE estimating 6, using
n RE samples is

NMSEre(d) = \/(d/(df4) —1)/n, d>0.  (10)
Similarly, the NMSE(d) using RV sampling is
NMSEry (d) = /(1/04 — 1)/n. (11)



Applying Theorem III.1 to eq.(10) yields

(d/(dfa) — 1)

<
NMSErw (d) < i

d>0. (12

From equations (12) and (11) we see that a fast mixing
RW more accurately estimates degrees larger than the
average (d > d) while RV sampling more accurately
estimates degrees smaller than the average (d < d). The

above analysis explains what has been previously observed
in [16].

V. MHRWU v.s. RWs

The RW described in Section IIT is the most common
type of RW found in the literature [14] but there are other
types of random walks. For more details refer to [19,
Chapter 7]. In [21] a Metropolis-Hastings RW that samples
vertices uniformly at random is described, which we denote
MHRWau in this work. MHRWu is found to be less accurate
than a RW in estimating some graph characteristics such
as the degree distribution [7].

A MHRWu is an accept-reject sampling process that
samples vertices uniformly. In this section we explore a
parallel between MHRWu and a RE resampling algorithm
(presented in Section V-A). The MHRWu works as follows,
starting at vertex v we:

« select a neighbor u of v uniformly at random;

o the next sampled vertex (step) is u with probability
min(d,/d,, 1), otherwise v is the next (step) sampled
vertex. This is equivalent to say that we add a copy of
vertex v to the sample set with probability max(0,1—
d,/d,,), otherwise u is the next (step) sampled vertex.

A. RW alternative unbiased estimator by resampling

In what follows we present another way to obtain an
unbiased estimate of F'. This estimator will be later used
to provide an approximation to MHRWu MSE. As before,
(Y;)®_, is a sequence of vertices sampled by RE. Let
K, be the number of vertices with degree d in (Y;),.
K, is a Binomial random variable with parameters n and
Pd = d/VOl(V) (P[Kd = k] = (Z)pg(l —pd)nik)‘ Let

Zi(d) € {1,2,...} be a sequence of i.i.d. Geometric random
variable with parameter pg, ¢ = 1,...,n.
Lemma V.1.

—1/772f dY

where dy, is the degree of Y;, is an unbiased estimate of
F (eq.(1)).

Proof: First

E[fvnz™] = B [B[f(v)2"|vi]] =
E B[ (Y)Y EZ"™ Y]] =
B f(V)BIZ" Y]] = BIF(¥)1/7v] =

Z fo)my/my = Z f)

YveV YveVvV

As (Y;), is an iid. sequence of random variables
E[F'] = (1/n)nE[f(Y;)Z (dy)], which concludes our
proof. [ ]

The next lemma provides the NMSE of estimating 0;
using Lemma V.1.

Lemma V.2.

2(1 - pa) .

NMSE (d) = o

Proof: The total number of replications of vertices

with degree d is Zg = Y. Z\¥. Note that F' = Zy/n,
which yields [20, pp. 349, Example 4n]

1 az
var(F') = — var Z ZJ(.d) =
n =

( / )(E[Kd]var(zj(d))+E[z§d>]2var(1<d)) _
+ (1/p3) (npa(1 = pa))) =

%) (n(1 — pa)/pa +n(l — pa)/pa) = 2

n*) ((npa)(1 — pa)/py +
)
npa

(1/n

Lemma V.1 gives E[F'] = 6}, which yields
= y/var(F") /04 = = Pd)

NMSE g ( W

B. Metropolis-Hasting RW: Uniform vertex
(MHRWu)

We now turn our attention to MHRWu of [21]. A
different way to present the MHRWu algorithm is as an
edge sampling process that samples vertices uniformly.
The MHRWu is time reversible, which means that the
same number of walkers going from v to v must go from
u to v. Let pgp be the probability that the walker goes
from a to b, a,b € V. Vertices are sampled uniformly
and the Markov chain is time reversible, which yields
Pou = Puv- To simplify our exposition we assume, without
loss of generality, that d, < d,. It is easy to see that
Pou = Puw = 1/d, satisfies the above conditions and
can be implemented by selecting neighbors of v and u

sampling



uniformly at random. However, because the walker chooses
v with probability 1/d,, > 1/d, we are required to add a
self-loop with probability 1/d,, — 1/d, at u, as illustrated
in Figure 1(a). The arrows in Figure 1(a) indicate the
walker direction and the probability that the direction is
taken. Thus, the probability that an edge (v,u) € E is
sampled is 1/(d,|V]). The self-loop adds an average of
(dy — dy)/(dy(dy — 1) + dy,) “extra” copies of u for each
sample of v, due to the existence of the edge (u,v).

o
di ® \U/ Qo u
@%@g
Faa Se
(a) (b)

Fig. 1. (a) MHRWu transition probabilities and (b) star graph example.

To illustrate the problem with MHRWu consider the
graph in Figure 1(b). The self-loop at u has probability
1 — 1/d,, which means that on average d, — 1 extra
copies of u are made for each sample of v. Note that the
resampling of vertex u can be described by the resampling
algorithm in Section V-A. However, as seen next, in general
a MHRWu resamples vertices significantly less often than
the resampling algorithm described in Section V-A.

C. A MHRWu MSE approximation

Consider an edge-sampling process that samples edge
(u,v) with probability 1/(max(dy,dy)|V]), V(u,v) € E.
Edges are sampled independently. After edge (u,v) is
selected, the probability that node v is resampled is 1/d,, —
1/d, if d, < d, and zero otherwise. The same is valid
for node u. While in a MHRWu only the vertex with a
self-loop is allowed to resample (i.e., make multiple copies
of itself), we simplify our analysis by assuming that edge
(u,v) incur self-loops on both u and v with probabilities
1/d, and 1/d,, respectively. Let (Y;)"_; be a sequence
of vertices sampled by RE and let K; be the number of
vertices with degree d in (Y;),. Setting pg = 1/d in

Lemma V.2 we get

B[Kgvar(Y,\ V) + B[YV|2var(K,)

NMSE;nh(d) 7 n2902l =
n@d(dQ — d) + d2n0d(1 — Gd) - d2(2 — Od) —d
n2632 o nb,
2d—1)2/0., —
N \/ (d—1)*/6a—1
n

Although there are no guarantees that NMSE, .\ (d) is a
good approximation to the true NMSE of MHRWu, our
simulations (some of these results presented in Section VII)
show that NMSE] , (d) is indeed close to the empirical
value of NMSE for large enough values of d.

It is interesting to take a closer look at the equation

(d—1)2/04—1

to note that the MHRWu NMSE grows linearly with d.
Constrast the linear growth of NMSE_; (d) as a function
of d with the NMSE of a RW:

NMSErw (d) < \/ (d/(d0a) — 1)/ (n(1 — ).
which is inversely proportional to d. Also note that

NMSE! ;. (d) > NMSErv(d) , Vd,

NMSE, ; (d) >

in fact, the error of MHRWau is almost d times larger than
the error of RV sampling.

There is still room for improvement in our approx-
imation. MHRWu is a type of random walk and that
the NMSE of MHRWu, similar to the NMSE of RW,
should also increase with a. Our approximation considers
independently sampled edges (i.e., @ = 0). As part of future
work we intend to derive the MSE expression of MHRWu
that includes . Table I summarizes our analytical results.

VI. CURRENT EFFORTS TO IMPROVE RW ACCURACY

Sampling a graph using a RW is not without drawbacks.
A random walker can get (temporarily) “trapped” inside
a subgraph whose characteristics differ from those of the
whole graph. Even if the random walker starts in steady
state (i.e., is stationary), a “trap” may increase the mean
squared error of the estimates. Ideally, the random walker
needs to mitigate the effect of these traps on the estimates.
Note that in a graph with such “traps” a ~ 1 and, as
seen in Section III, the RW MSE is upper bounded by
1/(1 — «). A simple naive solution to the RW “trapping”
problem (adopted in [7] to sample Facebook), is to sample
the graph using multiple independent random walkers [5].
This naive solution, however, can have the opposite effect
and exacerbate the problem [18]. The literature, however,



NMSE error

Sampling Method

Node Sampling

Edge Sampling \/@’ d>0
Random Walk < % . d>0
Metropolis-Hastings RW > \/@ . d>0

TABLE 1
SUMMARY OF RESULTS: DEGREE DISTRIBUTION ESTIMATION ERRORS
OF VARIOUS SAMPLING METHODS. 04 1S THE FRACTION OF NODES
WITH DEGREE d (QUANTITY THAT IS ESTIMATED), 1 IS THE
NUMBER OF SAMPLED NODES, AND & THE ABSOLUTE VALUE
OF THE SECOND MOST DOMINANT EIGENVALUE OF THE RW
TRANSITION PROBABILITY MATRIX

provides some promissing approaches to cope with this
problem if the graph admits a limited (small) amount of
RV sampling.

RV sampling has been used to significantly reduce « [1]
by allowing the random walks to “jump” to an RV sampled
node. The algorithm in [1] differs from the PageRank [3]
RW + RV “jumps” in that it obtains unbiased estimates of
eq.(1). In [1] it is also shown that, unless the underlying
graph is known, the PageRank algorithm must necessar-
ily obtain biased estimates of eq.(1). Another promissing
approach to improving the RW accuracy is starting m
dependent walkers at m RV sampled nodes. This approach,
called Frontier Sampling (FS) [18] given in Algorithm 1,
introduces a simple dependence among all m walkers in a
way that starting the m walkers at m RV sampled nodes is
arbitrarely close to starting FS in steady state, provided m
is large enough. In our simulations we observe that the FS
NMSE for m = 1000 is close to the NMSE of a RW with
negligible mixing time.

Algorithm 1: Frontier Sampling (FS).

1: n < 0 {n is the number of steps}
2: Initialize L = (v1,...,v,,) with m randomly chosen
vertices (uniformly)
3: repeat
4:  Select u € L with probability d../ )y, o1 dv
5. Select an outgoing edge of u, (u,v), uniformly at
random

6:  Replace v by v in L and add (u,v) to sequence of

sampled edges
7. n+<n+1
g8: until n > n — me

VII. SIMULATION RESULTS

In what follows we present the results of our simulations
of the sampling methods discussed in this paper. The graphs
used in our experiments are real-world graphs detailed in
Table II. But due to space constraints we restrict our results
to the two largest graphs in our datasets: LiveJournal and
Flickr. Note that our simulations are performed on discon-
nected graphs, which can increase the MSE of methods
such as RW and MHRWu (FS is designed to mitigate the
large MSEs caused by disconnected graphs). The results
using the other datasets are similar to LiveJournal and
Flickr results, no surprises worth reporting. All sampling
methods have a budget of n vertices to sample. Each
newly sampled vertex deducts one from the budget while
resampling a vertex does not change the budget (i.e.,
has cost zero). The empirical MSE of our simulations is
obtained over 10, 000 runs.

In some of our simulations we use a slightly different
MSE metric than the NMSE: the normalized root mean
square error of the Complementary Cumulative Distribution
Function (CCDF) v = {v4}a>1, where vq = >~ ;. Ok,

o 2
CN}4SE(d)::__flﬁﬁi__lill’
Yd
where vy is the estimate of 74. The CNMSE is just
the NMSE of ~4 and thus CNMSE[ ; (d), CNMSEry(d),
CNMSErw (d), and CNMSEgre(d) are have the same equa-
tion as their respective NMSE formulation with 6, replaced
by 4 (or Iy = dfy/d replaced by dryq/d).

Note that the graphs in Table IT are directed. Obtaining
directed graph characteristics such as the in-degree distribu-
tion from graphs that can be crawled like undirected graphs
(e.g., Twitter and Livejournal) is a trivial task, for more
details refer to [18].

(13)

Goodness of theoretical approximations

FS v.s. RW and RV sampling: This first set of simulations
differ from the remaining simulations in this paper in that
resampling a vertex reduces the sampling budget by one.
In our results we compare the MSE of FS and RE. In
our first result, Figure 2 shows the log-log plot of the in-
degree NMSE of FS, RW, and RV sampling. In Figure 2
we observe that the FS NMSE is close to the RE NMSE
for all degrees d > 0 (note that from Theorem III.1
the RE NMSE is equivalent to the MSE of a RW with
negligible mixing time (o < 1)). The same is true in
all other datasets. Moreover, as theoretically predicted by
the analysis performed in Section IV, the NMSE of RV
is smaller than the NMSE of RE when d is smaller than
the average degree and the NMSE of RV is larger than the
NMSE of RE when d is larger than the average degree.



Graph Flickr LiveJournal YouTube Internet RLT
Description Social Net. Social Net.  Social Net.  Internet tracert.
Type of graph Directed Directed Directed Directed
# of Vertices 1,715,255 5,204,176 1,138,499 192, 244
Size of LCC 1,624, 992 5,189,809 1,134,890 190, 914
# of Edges 22,613,981 77,402,652 9,890, 764 609, 066
Average Degree 12.2 14.6 8.7 3.2
Wmax 2232 1029 3305 335
% of Original Graph 26.9% 95.4% NA NA
TABLE II

SUMMARY OF THE GRAPH DATASETS USED IN OUR SIMULATIONS. “SI1ZE OF LCC” REFERS TO THE SIZE OF THE LARGEST CONNECTED
COMPONENT AND wyax IS THE VALUE OF THE LARGEST VERTEX DEGREE DIVIDED BY THE AVERAGE DEGREE.

Random Edge Sampling (100% hit ratio) <
FS (rn = 1000) (100% hit ratio)  +
Random Vertex Sampling (100% hit ratio) )

when d > 102. Remark that the CNMSE of MHRWu
is so large that for vertices with degree greater than
8 x 10* it is greater than 10,000. The estimates of
MHRWau are clearly much less accurate than the estimates
of FS. As we do not have «, we consider a = 0, i.e.,
CNMSErw(d) =~ CNMSEge(d). Note that CNMSEre(d)
approximates well the CNMSE of FS. From Theorem III.1
we know that this is equivalent to the CNMSE of a RW
with a small. Also observe that the CNMSE of MHRWu
is much larger than the CNMSE of RV and therefore, as
expected, the RV CNMSE is not a good approximation to
the MHRWu CNMSE .
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RV (10% hit ratio)
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Fig. 4. (LiveJournal) The log-log plot of the CNMSE of the in-degree

distribution estimates with budget n = |V'|/1000.
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Fig. 2. (Flickr) The log-log plot shows the NMSE of the in-degree
distribution estimation with budget n = |V/|/100 = 18612 (NMSE over
10, 000 runs).
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Fig. 3. (Flickr) The log-log plot of the CNMSE of the in-degree distribution

estimates with budget n = |V/|/100. RV with hit ratio 100%.

FS vs. CNMSEpy(d) bound & MHRWu v.s.
NMSE, ;(d) and RV sampling: In this simulation
on Flickr we seek to assess the goodness of the theoretical
approximation of NMSE, , (d) derived in Section V-C.
We also seek to test if assuming that the CNMSE of FS
is equivalent to the CNMSE of a RW that mixes fast
(i.e., a is small). We simulate FS, MHRWu, and RV on
the LiveJournal graph with n = |V|/100 samples each.
Figure 3 plots the the in-degree CNMSE of FS, MHRWau,
RV and also plots CNMSEre(d) and CNMSE_ . (d).

Note that the approximation of CNMSE_ , (d) is accurate

Accuracy of Graph Sampling Methods

In this simulation we compare RW, FS, MHRWu, and RV
(with 10% hit ratio). Figure 4 plots the in-degree CNMSE
of RW, FS, MHRWu, and RV (with 10% hit ratio) on the
LiveJournal graph for budget of n = |V|/1000. “RV with
(with 10% hit ratio)” represents random vertex sampling
when only 1 in 10 queries are valid, i.e., in average only
n/10 samples are used in the estimator. We observe that
RV (with 10% hit ratio) is less accurate than RW and FS.
FS is slightly more accurate than RW for degrees between
10 and 5 x 10°.

A similar simulation with n = |V[/100 on the Flickr
graph reveals a similar picture (results shown in Figure 5).
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Fig. 5. (Flickr) The log-log plot of the CNMSE of the in-degree distribution

estimates with budget n = |V|/100.

RV (with 10% hit ratio) is the most accurate sampling
method for degree d = 1 (with FS in a close second place).
For degrees d > 1 FS is the most accurate method. RW,
however, performs poorly when compared to FS (the CN-
MSE is up to one order of magnitude larger). MHRWau is
again the least accurate method (where CNMSE(d) > 1000
when d > 2 x 10%).

VIII. RELATED WORK

The first work to use resampling of RE as a rough
approximation to MHRWu sampling was [6]. We, however,
refine this rough approximation by computing the exact
probability of a self-loop, obtaining a good estimat of the
average number of resamples of the same node.

IX. CONCLUSIONS

This paper provides an upper bound for the MSE of a
stationary RW as a function of the MSE of RE and the
absolute value of the second most dominant eigenvalue
of the RW transition probability matrix. We observed that
RW and RV sampling are optimal in respect to different
weighted MSE optimizations and analyzed when RW is
preferable to RV sampling. We also presented an approx-
imation to the MHRWu MSE. Finally, we introduce a
novel RW sampling algorithm, Frontier Sampling (FS). Our
simulation experiments on large real world graphs showed
that FS achieves the MSE of a RW with negligible mixing
time.
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