
Computer Networks 56 (2012) 2773–2787
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Virtual indexing based methods for estimating node connection degrees

Pinghui Wang a, Xiaohong Guan a,b, Don Towsley c, Jing Tao a,⇑
a MOE Key Laboratory for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China
b Department of Automation and NLIST Lab, Tsinghua University, Beijing 100083, China
c Department of Computer Science, University of Massachusetts, Amherst, MA 01003, United States
a r t i c l e i n f o

Article history:
Received 22 September 2011
Received in revised form 5 February 2012
Accepted 28 March 2012
Available online 4 April 2012

Keywords:
Data streaming
Traffic monitoring
Super host detection
1389-1286/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.comnet.2012.03.025

⇑ Corresponding author. Tel.: +86 029 8267 3443
4603.

E-mail address: jtao@sei.xjtu.edu.cn (J. Tao).
a b s t r a c t

It is difficult to accurately measure node connection degrees for a high speed network,
since there is a massive amount of traffic to be processed. In this paper, we present a
new virtual indexing method for estimating node connection degrees for high speed links.
It is based on the virtual connection degree sketch (VCDS) where a compact sketch of net-
work traffic is built by generating multiple virtual bitmaps for each network node. Each vir-
tual bitmap consists of a fixed number of bits selected randomly from a shared bit array by
a new method for recording the traffic flows of the corresponding node. The shared bit
array is efficiently utilized by all nodes since every bit is shared by the virtual bitmaps
of multiple nodes. To reduce the ‘‘noise’’ contaminated in a node’s virtual bitmaps due to
sharing, we propose a new method to generate the ‘‘filtered’’ bitmap used to estimate node
connection degree. Furthermore, we apply VCDS to detect super nodes often associated
with traffic anomalies. Since VCDS need a large amount of extra memory to store node
addresses, we also propose a new data structure, the reversible virtual connection degree
sketch, which identifies super node addresses analytically without the need of extra mem-
ory space but at a small increase in estimation error. Furthermore we combine the VCDS
and RVCDS based methods with a uniform flow sampling technique to reduce memory
complexities. Experiments are performed based on the actual network traffic and testing
results show that the new methods are more memory efficient and more accurate than
existing methods.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In-degree/out-degree, defined as the number of distinct
sources/destinations that a network node (e.g. router, host,
or server) connects to, is one of most important traffic met-
rics for extracting network traffic characteristics and can
provide insights into many network measurement and
monitoring applications, such as firewalls and intrusion
detection devices [1,2]. Identifying super nodes defined
as nodes with out-degrees or in-degrees larger than a pre-
defined threshold, is very useful for detecting network
anomalies in high speed links [3]. For example, detecting
. All rights reserved.

; fax: +86 029 8266
nodes with large out-degrees is used to detect port scans
and worm propagations, since a node launching a port scan
or infected by worm generally exhibits a large number of
connections to distinct destinations. These nodes are
clearly considered as super sources. Since distributed de-
nial of service (DDoS) attacks are generated by a large
number of nodes flooding packets to a destination, the
problem of detecting DDoS attacks can be viewed as that
of identifying super destinations.

The node connection degree is generally measured in
terms of flows, which refer to the sets of all packets with
the same source and destination addresses. To obtain the
total number of flows generated by a node, one needs to
build a hash table that keeps track of existing flows to
avoid duplicating flow records for packets from the same
flow. A large number of flows must be processed and

http://dx.doi.org/10.1016/j.comnet.2012.03.025
mailto:jtao@sei.xjtu.edu.cn
http://dx.doi.org/10.1016/j.comnet.2012.03.025
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Table 1
Table of notations.

F Number of flows

S Source space
N Size of source space S
n Number of appeared sources
Os Out-degree of node s
/ Threshold for super node detection
H Number of virtual bitmaps that a node has
{h1, . . . ,hR} A group of reversible hash functions
A 1 �m Bit array
m Size of bit array A
FiðsÞ FiðsÞ ¼ ffi;0ðsÞ; . . . ; fi;L�1ðsÞg
Bi(s) Bi(s) = (A[fi,0(s)], . . . ,A[fi,L�1(s)])
L Number of bits in a virtual bitmap
a, b, mi, p Parameters of hash function hi

M M = m1 � � �mR

s Flow sampling rate

2774 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
stored in order to detect super nodes in a large network,
especially if they are conducting stealthy slow attacks
where a large time window is needed. Clearly it is not prac-
tical to obtain node connection degrees by building per-
node hash tables since there would be too many active
nodes and flows. In addition, applications measuring node
connection degrees in realtime have to be implemented
with very fast and expensive SRAM, since DRAM may not
support the required high access rates. Therefore, it is
important to make node connection measurement and
super node detection memory efficient.

Flow sampling provides a possibly efficient way to ana-
lyze and process massive packet streams [4,5], since only a
relatively small subset of network traffic needs to be stored
and processed. Recently, data streaming methods have
been widely applied to approximately measure statistics
of network traffic for high speed links, such as the total
number of active flows [6], per-flow traffic [7], heavy hitter
[8–10], heavy change [11–13], flow size distribution
[14,15], super nodes [16–18], and traffic entropy estima-
tion [19,20]. To reduce data dimensionality, these methods
build a probabilistic summary of network traffic using a
small and fast memory. Each and every incoming packet
is processed in real-time using a few operations. Estan
and Varghese [6] proposed a family of bitmap algorithms
for estimating the total number of distinct flows on high
speed links.

To measure node connection degrees, Yoon et al. [21]
build a virtual bitmap for each node by taking bits ran-
domly from a shared bit array using a group of hash func-
tions. To detect super nodes, Li et al. [18] proposed a more
memory efficient method combined the method in [21]
and a uniform flow sampling technique. However, there
are still several unresolved issues. First, each bit in the
shared bit array is shared by all of the nodes, so that the
bits in a node’s virtual bitmap may not be set by the flows
of this node but others. This introduces ‘‘noise’’ into a
node’s virtual bitmap that affects estimation of its connec-
tion degree. In particular, the virtual bitmap for a node
with a small number of connections is sensitive to this
‘‘noise’’, since it contains more bits contaminated by other
nodes. Second, since the number of distinct bits in the vir-
tual bitmap selected by the methods in [18,21] varies due
to hash collisions, there is no guarantee on the quality of
the connection degree estimate with many hash collisions.
Third, a large amount of memory is needed by the methods
in [18,21] to store node addresses being monitored, and
the reversing procedures developed in [12,9,17] for identi-
fying super nodes or heavy hitters cannot be directly ap-
plied to the data structures in [21,18]. Fourth, the
accuracy analysis for node connection degree estimators
in [18,21] is based on the assumption that each flow inde-
pendently and uniformly hashes into the shared bit array.
However our analysis in Section 3 shows that a node’s
flows do not hash into the shared bit array independently.
Aiming to address the above challenges, we develop the
following methods in this paper.

(1) We present a new virtual indexing method to accu-
rately estimate node connection degrees over high
speed links. We develop a very compact sketch of
network traffic called, virtual connection degree
sketch (VCDS) is developed and applied to estimate
the connection degree of each node based on its
multiple virtual bitmaps. Each virtual bitmap con-
sists of a fixed number of bits selected randomly
from a small shared bit array using a new virtual bit-
map generation method. We present an algorithm to
correct for the ‘‘mutual affection or coupling’’ in the
shared bit array by generating the ‘‘filtered’’ bitmap
calculated based on the node’s multiple virtual
bitmaps.

(2) We develop two VCDS based super node detection
algorithms. The first algorithm directly uses a VCDS
to build a data digest of node connection degrees.
The node address hash table for storing addresses
of observed nodes is needed since a VCDS alone can-
not identify super nodes. The second algorithm is
based on a new data structure, reversible virtual con-
nection degree sketch (RVCDS). It uses a group of
reversible hash functions developed in our previous
work [22] based on the Chinese remainder theorem
in number theory to obtain the super node
addresses. Although a RVCDS does not preserve any
node address information, we can analytically
reconstruct super node addresses based on proper-
ties of the group of reversible hash functions. Com-
pared to the first method, which stores all node
addresses, RVCDS is more memory efficient. How-
ever the first method finds super nodes from node
addresses that appear in the monitored traffic,
whereas RVCDS identifies super nodes from the
entire node address space and may report more false
super nodes. Both algorithms are highly efficient
since their update/query complexities are low, and
our experimental results show that they have almost
the same accuracy when a small number of super
nodes exist. Furthermore we combine VCDS and
RVCDS with a uniform flow sampling technique to
reduce memory complexity.

This paper is organized as follows. The data streaming
model is introduced and the problem is formulated in Sec-
tion 2. In Section 3 the new data streaming method VCDS is



P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2775
described in details. Section 4 presents several methods to
detect super nodes. The performance evaluation and test-
ing results are presented in Section 5. Section 6 summa-
rizes related work. Concluding remarks then follow. A list
of notations used is shown in Table 1.

2. Data streaming model

Let P ¼ p1; p2; . . . be an input packet stream arriving
sequentially at a network monitor. Here pt = (st,dt) repre-
sents the tth packet, where st 2 S and dt 2 D are its source
and destination respectively, and S and D are the source
and destination spaces. The out-degree of node s is defined
as Os = jD(s)j, the number of elements in set D(s), where
DðsÞ ¼ fdjðs; dÞ 2 P; d 2 Dg is the set of destinations associ-
ated with s. The in-degree of node d 2 D is defined as
Id = jS(d)j, where SðdÞ ¼ fsjðs; dÞ 2 P; s 2 Sg is the set of
sources associated with d. We define the sets of super
sources/destinations as nodes whose out-degrees/in-de-
grees are larger than /F, where 0 < / < 1 is a threshold,
and F is the total number of flows. The algorithms pre-
sented in the following sections are used to measure node
out-degrees and detect super sources, and can also be ap-
plied to measure node in-degrees and detect super
destinations.

3. Virtual connection degree sketch

In this section, we present a new data structure VCDS to
build a very compact sketch of network traffic, which is
used to estimate the connection degree of each node based
on the associated virtual bitmaps. Each virtual bitmap con-
sists of a fixed number of bits selected randomly from a
shared bit array by a virtual bitmap generation method
to be described below. The shared bit array is efficiently
utilized by all nodes since every bit is shared by the virtual
bitmaps of multiple nodes. To reduce the ‘‘noise’’ contami-
nating in each node’s virtual bitmaps because of sharing, a
new method is proposed to generate the ‘‘filtered’’ bitmap
used to estimate the node connection degree.

3.1. Data structure

As shown in Fig. 1, a VCDS consists of a bit array A[k]
(0 6 k 6m � 1) associated with H independent groups of
Fig. 1. Architecture of VCDS.
hash functions FiðsÞ ¼ ffi;0ðsÞ; . . . ; fi;L�1ðsÞg (1 6 i 6 H), each
containing L hash functions that map the source space
{0, . . . ,N � 1} to {0, . . . ,m � 1}. Here N is the size of source
space S.

Each source s has H corresponding virtual bitmaps Bi(s)
(1 6 i 6 H) where Bi(s) is defined as a bit array consisting of
L bits selected randomly from A by the group of hash func-
tions FiðsÞ, that is

BiðsÞ ¼ ðA½fi;0ðsÞ�; . . . ;A½fi;L�1ðsÞ�Þ:

Bi(s) can be viewed as a direct bitmap as proposed in [23]
occupied only by source s. The length of the direct bitmap
is constant and is a critical parameter in estimating the
out-degree of s. However the number of distinct bits in
Bi(s) is smaller than L, since A[fi,0(s)], . . ., A[fi,L�1(s)] are se-
lected from A and can suffer hash collisions. There is no
guarantee on the quality of the estimate of the out-degree
of a node whose virtual bitmap is generated with many
collisions. For example, when m = 106 and L = 104, the
number of distinct bits selected from A by the group of
hash functions FiðsÞ is smaller than L with a probability
of 1 � 10�22 and its expectation is 9950. This problem also
exists but is not noticed in [21,18]. To address this issue,
we propose a virtual bitmap generating method by design-
ing fi,j(s) (1 6 i 6 H, 0 6 j 6 L � 1) based on the double
hashing scheme [24]

fi;jðsÞ ¼ wi;1ðsÞ þ jwi;2ðsÞ mod m;

where wi,1 is a hash function that maps the source space
uniformly to the range {0,1, . . . ,m � 1}, wi,2 is a hash func-
tion that maps the source space uniformly to the range
{1,2, . . . ,m � 1}, and m is a prime. It is easily validated that
each fi,j also maps the source space uniformly to the range
{0,1, . . . ,m � 1}. The following theorem shows that each
virtual bitmap is hashed into L different bits in A.

Theorem 1. For a source s, L different bits are selected from A
by each group of hash functions FiðsÞ (1 6 i 6 H), that is,

fi;j1 ðsÞ– f i;j2
ðsÞ; 1 6 j1 < j2 6 L� 1:

For any two distinct bits in A, the probability that they
are selected by Bi(s) satisfies the following theorem.
Theorem 2. There are m(m � 1) distinct virtual bitmaps. For
each virtual bitmap Bi(s) (1 6 i 6 H, s 2 S), we have the
following probabilities for any distinct elements of A, A[k1]
and A[k2] (0 6 k1, k2 6m � 1, and k1 – k2).

ð1Þ Pðk1 2 FiðsÞÞ ¼
L
m
;

ð2Þ Pðk1 2 FiðsÞ and k2 2 FiðsÞÞ ¼
LðL� 1Þ

mðm� 1Þ ;

ð3Þ Pðk1 2 FiðsÞ and k2 R FiðsÞÞ ¼
Lðm� LÞ
mðm� 1Þ ;

ð4Þ Pðk1 R FiðsÞ and k2 R FiðsÞÞ ¼ 1� 2L
m
þ LðL� 1Þ

mðm� 1Þ :

The proofs are given in Appendix.



2776 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
3.2. Update procedure

Each bit in A is initially set to zero. When a packet
p = (s,d) arrives, we set the g(d)th bit in each virtual bitmap
Bi(s) (1 6 i 6 H) to one. Here g is a uniform hash function
with range {0,1, . . . ,L � 1}. As the g(d)th position in Bi(s),
corresponds to A[fi,g(d)(s)], we only need to set H bits for
each incoming packet as follows:

A½fi;gðdÞðsÞ� ¼ 1; 1 6 i 6 H:
3.3. Connection degree estimator

The bits in Bi(s) (1 6 i 6 H) that the flows of source s
hash into using hash functions FiðsÞ are denoted as the bits
used by s in the following part. They are set to one to store
the flow information of s, so each Bi(s) can be used to esti-
mate the out-degree of s similar to the direct bitmap pro-
posed in [23]. Since each bit in Bi(s) is selected randomly
from A and also shared by other sources, the other bits in
Bi(s) not used by s might also be set to one by flows belong-
ing to other sources. This introduces ‘‘noise’’ into the esti-
mation of the out-degree of s. Therefore the more bits in
Bi(s) are not used by s, the more ‘‘noise’’ is generated. The
size of the virtual bitmap, L, is usually set to several thou-
sands to guarantee a high accuracy in estimating the out-
degree of a source associated with a huge number of flows.
It will generate a large number of bits containing ‘‘noise’’
especially for the source associated with a small number
of flows. In what follows, we introduce a new ‘‘filtered’’ bit-
map generation method to reduce the ‘‘noise’’ generated
by other sources. The ‘‘filtered’’ bitmap Bs defined as a bit
vector is computed from B1(s), B2(s), . . ., and BH(s) as
follows:

Bs ¼ B1ðsÞ � B2ðsÞ � . . .� BHðsÞ;

where � is the bit-AND operation. For any flow (s,d) of s,
the g(d)th bit in each Bi(s) (1 6 i 6 H) is set to one, so the
g(d)th bit in Bs is still one.

For any bit x in the set of bits in A excluding bits in Bi(s)
used by source s, we define as to be the probability that x is
not set to one. For each virtual bitmap Bi(s) (1 6 i 6 H) of
source s, the probability that the other nH � 1 virtual bit-
maps generated by the n sources that appear in the moni-
tored network all differ from Bi(s) is

Pdif ¼ 1� 1
mðm� 1Þ

� �nH�1

> 1� nH � 1
mðm� 1Þ : ð1Þ

Note that Pdif is very close to 1. For example, when m > n,
m = 106, and H = 1, Pdif > 1 � 10�6. For simplicity, the fol-
lowing analysis assumes that these nH � 1 virtual bitmaps
all differ from Bi(s). Let u(j) be the probability that x is not
set to one by updates associated with Bl(j) (1 6 l 6 H) that
is a virtual bitmap of any source j and differs from Bi(s).
Based on Theorem 2, Bl(j) contains x with probability L/m.
When Bl(j) contains x, x is set to one by updates associated

with Bl(j) with probability 1� 1� 1
L

� �Oj . Thus, we have

uðjÞ ¼ m� L
m
þ L

m
1� 1

L

� �Oj

:

Therefore as ¼ UH

uðsÞ, where U ¼
Q

j2SuðjÞ. For any given bit in

filtered bitmap Bs not used by s, it is zero if and only if at
least one of its associated bits in Bi(s) (1 6 i 6 H) is not
set to one, which occurs with probability ps = 1 � (1 � as)H.
Therefore it is a noise bit when all corresponding bits in
Bi(s) (1 6 i 6 H) are ones with probability

qs ¼ ð1� asÞH:

Let m and L are given. We want to optimize H to minimize
the ‘‘noise’’ contaminated in the ‘‘filtered’’ bitmap Bs. There
are two competing forces: for each bit in Bs not used by s,
using a larger H gives us a greater chance of finding a zero
bit in its H corresponding bits in Bi(s); but using more
bitmaps results in more bits in A being set to one, which
increases the probability that a node’s virtual bitmap is
contaminated with ‘‘noise’’. When m� L, we have
qs � k(H) = (1 �UH)H. The impact of H on the ‘‘noise’’ is
described in the following Theorem.

Theorem 3. k(H) = (1 �UH)H decreases with H 2 0;� 1
ln U

� �
,

increases with H 2 � 1
ln U ;þ1

� �
, and obtains the minimum at

H ¼ � 1
ln U.

The proof is given in Appendix. In what follows a new
method is proposed to estimate the out-degree of source
s. For any given bit in filtered bitmap Bs not used by s, it
is zero if and only if at least one of its associated bits in
Bi(s) (1 6 i 6 H) is not set to one, which occurs with prob-
ability ps = 1 � (1 � as)H. Denote the number of bits in Bs

not used by s as Us, then the expectation of UBs , the number
of zero bits in Bs is

EðUBs Þ ¼ EðUspsÞ ¼ psEðUsÞ: ð2Þ

Since the probability that a given bit in Bs is not used by

source s is 1� 1
L

� �Os , the expectation of Us is

EðUsÞ ¼ L 1� 1
L

� �Os

: ð3Þ

Let BiðsÞ ¼ yðkÞi

n o
(0 6 k 6m � L � 1) be the set of bits

in A excluding all L bits in Bi(s). The probability that any
bit yðkÞi is not set to one is as, so the expectation of U0BiðsÞ,
the number of zero bits in BiðsÞ is

EðU0BiðsÞÞ ¼ ðm� LÞas:

Since ps = 1 � (1 � as)H, we have

ps ¼ 1� 1�
EðU0BiðsÞÞ
m� L

 !H

: ð4Þ

From (2)–(4), we have

Os ¼

ln EðUBs Þ
L � ln 1� 1�

E U0Bi ðsÞ

� �
m�L

0@ 1AH
0B@

1CA
ln 1� 1

L

� � : ð5Þ

Replacing EðUBs Þ and EðU0BiðsÞÞ in (5) by the instantaneous

values, UBs and U0BiðsÞ, we have the following estimators

OðiÞs (1 6 i 6 H):



P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2777
OðiÞs ¼ �L ln
UBs

L
þ L ln 1� 1� U � UBiðsÞ

m� L

� �H
 !

:

Finally we estimate the out-degree of source s as

Oest
s ¼ median16i6HOðiÞs :
3.4. Parameter configuration

Since the total complexity for updating each packet is
O(H), H should be small. The space complexity of VCDS is
O(m). If the out-degree of source s is much larger than
L lnL + O(L), we will obtain all ones in its corresponding vir-
tual bitmaps with high probability due to the result of the
‘‘coupon collector’s problem’’ [25]. In this case, the out-de-
gree of source s cannot be estimated accurately, and we
only know that it is not smaller than L lnL. To address this
issue, we can directly use a larger L or use a sampled VCDS
method presented in Section 4.3, which combines a flow
sampling technique and VCDS.

4. Super node detection

In this section we first present a super node detection
method which directly uses VCDS to build a data digest
of node connection degrees, and a node address hash table
to store addresses of observed nodes. The node address
hash table is needed since VCDS cannot be used directly
to identify super nodes. That is, for a given node, we can
test whether or not it is a super node based on testing its
connection degree estimated by VCDS is larger than the
threshold. However, it is not possible to identify super
nodes only by inspecting VCDS without storing links to
node addresses. We then present a new data structure
RVCDS to detect super nodes. It uses a group of reversible
hash functions that takes advantage of the remainder char-
acteristics from number theory to obtain the super node
addresses. Although RVCDS does not preserve any node ad-
dress information, we can analytically reconstruct super
node addresses purely based on the characteristics of the
group of reversible hash functions. Moreover the VCDS
and RVCDS based super node detection methods are ex-
tended and incorporated with a uniform flow sampling
technique to reduce memory.

4.1. VCDS based method

A block diagram of the VCDS based super node detection
method is shown in Fig. 2. The F estimation module is used
to estimate F, the total number of flows using the method
Fig. 2. VCDS based super source detection method.
reported in [6]. The VCDS module encodes out-degree
information for every source into a very compact data
structure, and the source address hash table aims to store
all source addresses that appear in the monitored network.
Finally each collected source address is tested to determine
whether or not it is a super source based on its estimated
out-degree as calculated by VCDS. These modules are de-
scribed in the following subsections.

4.1.1. Update procedure
We use a hash table to store all source addresses sim-

ilar to the method proposed in [21]. For each packet
p = (s,d), s is inserted into the hash table if and only if
at least one associated bit A[fi,g(d)(s)] (1 6 i 6 H) is set from
zero to one. Note that the source of a flow is inserted into
the hash table at most once since all of its packets hash
into the same positions in A, and once they are set to
one, the source address is never updated in the hash ta-
ble. Hence it does not cost much to collect source
addresses.

4.1.2. Super node detection
Finally each node in the source address hash table is

tested to determine whether or not it is a super source
based on its estimated out-degree as calculated by VCDS.
If its estimated out-degree is larger than /bF , where bF is
an estimate of F obtained from the F estimation module,
it is reported as a super source. For each coming packet,
we determine whether or not its associated flow has ap-
peared by examining the flow’s H associated bits in A,
which can be viewed as a Bloom filter [26]. The source ad-
dress of a flow might not be collected in the source address
hash table since its first packet might be wrongly identified
as a packet associated with an appeared flow. Thus, there is
a chance that we miss a super source when all of its flows
are wrongly determined.

4.1.3. Parameter configuration
For sources with small out-degrees, Theorem 3 shows

that the accuracies of their estimates are greatly improved
by using a small value of H slightly larger than one. How-
ever there is less ‘‘noise’’ in the virtual bitmaps of a super
source, and we simply set H to one, so as to make the pro-
cessing of each packet more efficient. The space complexity
of the VCDS based method consists of the space for the
source address hash table and bit array A. The space com-
plexity of the source address hash table is O(n), where n is
the number of source addresses that appear in the traffic
stream. The space complexity of VCDS is O(m).

4.2. RVCDS based method

The VCDS based super source detection system requires
a large source address hash table particularly for a large
network with a large number of existing sources. In what
follows we propose a new data structure, RVCDS, which
identifies super sources analytically using a group of
reversible hash functions. It requires no extra memory
space to store the source addresses that appear in the mon-
itored network. A block diagram of the system is shown in
Fig. 3. The F estimation module is the same as that



Fig. 3. RVCDS based super source detection method.

Fig. 4. Architecture of RVCDS.

2778 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
presented in Fig. 2, which is used to estimate F, the total
number of flows. The other two modules are described la-
ter in this section.

4.2.1. RVCDS
A RVCDS consists of a bit array A[k] (0 6 k 6m � 1)

associated with a group of reversible hash functions
{h1, . . . ,hR} and H independent groups of hash functions
FiðsÞ (1 6 i 6 H). Here FiðsÞ is the same as those introduced
in Section 3. hi maps the source space uniformly to the
range Di = {0,1, . . . ,mi} (1 6 i 6 R). As shown in Fig. 4, each
source s has two types of virtual bitmaps: Bi(hi(s))
(1 6 i 6 R) and Bi(s) (R + 1 6 i 6 H), where Bi(s)
(R + 1 6 i 6 H) is the same as that introduced in Section 3.
To generate virtual bitmap Bi(hi(s)) (1 6 i 6 R), we first cal-
culate a reverse index number hi(s) for source s, which is
used in the reverse computation operation discussed later.
hi(s) is then used as input to the corresponding group of
hash functions FiðsÞ used to generate the virtual bitmap Bi(-
hi(s)), that is,

BiðhiðsÞÞ ¼ ðA½fi;0ðhiðsÞÞ�; . . . ;A½fi;L�1ðhiðsÞÞ�Þ:

hi (1 6 i 6 R) used in RVCDS is selected randomly from a
class of 2-universal hash functions Hmi

¼ fha;b;mi
ðxÞg de-

fined below. ha;b;mi
ðxÞ is defined as

ha;b;mi
ðxÞ ¼ ga;b;pðxÞ mod mi; 1 6 i 6 R ð6Þ

where ga,b,p(x) = ax + b mod p, a 2 {1,2, . . . ,p � 1} and
b 2 {0,1, . . . ,p � 1}, with p selected as a prime larger than
the source space size N. This construction ensures that
sources hash uniformly into different reverse indexes.
The proof can be found in [24]. m1, . . ., mR are selected as
pair-wise co-prime integers to make RVCDS reversible as
will be discussed later.

4.2.2. Update procedure
For each incoming packet (s,d), we set the g(d)th bit in

Bi(hi(s)) (1 6 i 6 R) and Bi(s) (R + 1 6 i 6 H) to one. As the
g(d)th position in Bi(s) (R + 1 6 i 6 H) corresponds to
A[fi,g(d)(s)], and the g(d)th position in Bi(hi(s)) (1 6 i 6 R)
corresponds to A[fi,g(d)(hi(s))], we only need to set the fol-
lowing H bits (similar to VCDS):

A½fi;gðdÞðhiðsÞÞ� ¼ 1; 1 6 i 6 R;

A½fi;gðdÞðsÞ� ¼ 1; Rþ 1 6 i 6 H:
4.2.3. Connection degree estimator
The ‘‘filtered’’ bitmap Bs for each source s is a bit vector

computed from B1(h1(s)), . . ., BR(hR(s)), BR+1(s), . . ., and BH(s)
as

Bs ¼ B1ðh1ðsÞÞ � . . .� BRðhRðsÞÞ � BRþ1ðsÞ � . . .� BHðsÞ:
For any bit x in Bi(hi(s)) not used by source s, we define
u(j) to be the probability that x is not set to one by updates
associated with virtual bitmap Bi(hi(j)) (j – s) that is
different from Bi(hi(s)). Based on Theorem 2, we have that
Bi(hi(j)) contains x with probability L/m. When Bi(hi(j))
contains x, x is set to one by flows of source j through
Bi(hi(j)) with probability 1� 1� 1

L

� �Oj . Thus, we have

uðjÞ ¼ m� L
m
þ L

m
1� 1

L

� �Oj

: ð7Þ

The case hi(j) = hi(s) occurs with probability 1
mi

, and
Bi(hi(j)) is the same as Bi(hi(s)). If this is not the case,
Bi(hi(j)) is the same as Bi(hi(s)) with probability 1

mðm�1Þ,

since each virtual bitmap is selected uniformly and inde-
pendently from a total of m(m � 1) distinct virtual bit-
maps. Therefore, Bi(hi(j)) is the same as Bi(hi(s)) with

probability 1
mi
þ 1

mðm�1Þ 1� 1
mi

� �
� 1

mi
. When Bi(hi(j)) is the

same as Bi(hi(s)), no flow of j sets x to one with probability

1� 1
L

� �Oj . Define hi(j) to be the probability that x is not set
to one by updates associated with Bi(hi(j)). From (7), we
have

hiðjÞ ¼ 1� 1
mi

� �
uðjÞ þ 1

mi
1� 1

L

� �Oj

: ð8Þ

We see that hi(j) decreases with 1
mi

. When mi goes to
infinity, all existing sources are hashed by hi into different
reverse index numbers without collisions, hi(j) = u(j), and
RVCDS is the same as VCDS. Therefore RVCDS is less accu-
rate than VCDS for estimating node connection degrees.

From (8), we have 1� hiðjÞ
uðjÞ

��� ��� 6 1
mi

, so hi(j) � u(j) when mi is

reasonable large. The estimate for the out-degree of source
s is similar to that of VCDS

Oest
s ¼ median16i6HOðiÞs ;

where OðiÞs (1 6 i 6 R) is

OðiÞs ¼ �L ln
UBs

L
þ L ln 1� 1� U � UBiðhiðsÞÞ

m� L

� �H
 !

and OðiÞs (R < i 6 H) is



P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2779
OðiÞs ¼ �L ln
UBs

L
þ L ln 1� 1� U � UBiðsÞ

m� L

� �H
 !

where U is the number of zero bits in A, UBs is the number
of zero bits in Bs, UBiðsÞ (1 6 i 6 R) is the number of zero bits
in Bi(s), and UBiðhiðsÞÞ (R < i 6 H) is the number of zero bits in
Bi(hi(s)).

4.2.4. Reverse computation
As shown in Fig. 5, we first calculate super source can-

didates using the group of reversible hash functions
{h1, . . . ,hR}. To reduce false super sources, each super
source candidate is then validated by its estimated out-de-
gree as calculated by RVCDS.

For a source s, denote the probability that a given bit in
the set of bits in A excluding the bits in Bi(hi(s)) used by s is
not set to one as ci. Let Us be the number of bits in Bi(hi(s))
not used by s, and UBiðhiðsÞÞ be the number of zero bits in
Bi(hi(s)). Then the expectation of UBiðhiðsÞÞ is

EðUBiðhiðsÞÞÞ ¼ ciEðUsÞ: ð9Þ

Let BiðhiðsÞÞ be the set of bits in A excluding all L bits in
Bi(hi(s)), and U0BiðhiðsÞÞ be the number of zero bits in BiðhiðsÞÞ.
Then we have

E U0BiðhiðsÞÞ

� �
¼ ðm� LÞci: ð10Þ

Since EðUsÞ ¼ L 1� 1
L

� �Os � Le�
Os
L and EðUBiðhiðsÞÞÞ ¼ EðUÞ�

E U0BiðhiðsÞÞ

� �
, we have the following equation from (9) and

(10):

EðUBiðhiðsÞÞÞ ¼
EðUÞLe�

Os
L

m� Lþ Le�
Os
L

: ð11Þ

Replacing E(U) by the instantaneous value U in (11), we

have the following equation when Os ¼ /bF
2 , where bF is an

estimate of F.

EðUBiðhiðsÞÞÞ ¼ U/ ¼
ULe�

/bF
2L

m� Lþ Le�
/bF
2L

:

If source s is a super source whose out-degree Os is larger
than /F, then it is highly probable that UBiðhiðsÞÞ is smaller
than the threshold U/. Based on the above analysis, we first
detect heavy index number set Ii defined as

Ii ¼ fkjUBiðkÞ < U/;0 6 k 6 mi � 1g; 1 6 i 6 R:

Each hash function hi maps all sources uniformly into the
range {0,1, . . . ,mi � 1}, so super sources can be identified
Fig. 5. Architecture of reverse computation.
by finding source addresses in the source space that hash
into Ii using function hi. The super source candidate identi-
fication problem is formulated as: With known inputs:
Hash functions fhigR

i¼1, hi: {0,1, . . . ,N � 1} ? {0,1, . . . ,
mi � 1}, find all x 2 {0,1, . . . ,N � 1} such that hiðxÞ 2 Ii for
all i 2 {1,2, . . . ,R}.

We first consider the simplest scenario. Assume each Ii

contains only one index, denoted as ci. Based on the hash
functions defined in (6), the super source candidate identi-
fication problem converts to the problem of simultaneous
congruence: find x such that

ga;b;pðxÞ 	 ci mod mi; 1 6 i 6 R

ga;b;pðxÞ ¼ axþ b mod p

0 6 x 6 N � 1

8><>: ð12Þ

If we denote y = ga,b,p(x), we have

y 	 ci mod mi; 1 6 i 6 R: ð13Þ

Based on the Chinese remainder theorem [27], the solu-
tions of the congruencies (13) are easily obtained as

y 	
PR
i¼1

MiM
�1
i ci mod M ð14Þ

where M = m1 � � �mR and Mi ¼ M
mi

. M�1
i is determined from

MiM
�1
i 	 1 mod mi. Since y 2 {0, . . . ,p � 1}, the solutions

of (14) are

y ¼ kM þ l; 0 6 k 6 K ð15Þ

where l is the unique solution of (13) smaller than M and
K ¼ p�l

M

	 

. Since y = ga,b,p(x) = ax + b mod p, (15) transforms

to

axþ b ¼ kM þ l mod p; 0 6 k 6 K: ð16Þ

From the Euler–Fermat theorem [27], we know av(p) 	 1
mod p, where v(p) is the Euler totient function defined as
the number of positive integers not larger than p that are
co-prime to p. Since p is a prime, v(p) = p � 1. Therefore
(16) transforms to

x ¼ ap�2ðkM þ l� bÞ mod p; 0 6 k 6 K:

Thus, the solutions of (15) are obtained as

X2 ¼ fxjx ¼ ap�2ðkM þ l� bÞ mod p; 0 6 k 6 Kg

and the solutions of (12) are

X1 ¼ fxjx 2 X2; 0 6 x 6 N � 1g:

If M P N, there is at most one solution in the source
space. Otherwise, the number of solutions is at most
1 + bp/Mc. For the general reverse scenario, denote the set
of all possible combinations of R heavy index numbers as
{P1, . . . ,PZ}, where Z ¼ jI1j � � � jIRj. For each Pj (1 6 j 6 Z) con-
sisting of R heavy index numbers selected separately from
Ii (1 6 i 6 R), we obtain solution set Sj based on the method
for solving the simplest scenario problem (12). Then the
entire super source candidate set is the union of all sets
Sj. Suppose two super sources exist, and each Ii contains
two indices, then the number of super source candidates
generated is at least 2R. To reduce false positives, each
super source candidate is validated based on its estimated
out-degree as calculated by RVCDS.



100 102 104 106

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

out−degree

C
C

D
F

Trace 1
Trace 2

Fig. 6. CCDF of node out-degree distributions.

2780 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
4.2.5. Parameter configuration
RVCDS only needs to set H bits for each incoming packet

so the update complexity is O(H). The computational com-
plexity for detecting heavy index sets Ii (1 6 i 6 R) is

O
PR

i¼1mi

� �
, and 1 + bp/Mc source addresses need to be cal-

culated for each possible combination of the heavy index
numbers, therefore the computational complexity for gen-

erating the super sources is O
PR

i¼1mi þ ð1þ bp=McÞER
� �

,

where E ¼maxfjI1j; . . . ; jIRjg. Since the computational com-
plexity for generating super sources is exponentially re-
lated to the parameter R, a small value of R should be
selected. In our experiments we set R = 2 and H = 3 to make
the update complexity low. m1 and m2 are set relatively lar-
ger than the total number of sources that appear in the
monitored network so as to ensure that most sources hash
into distinct reverse index numbers without collisions.

4.2.6. Comparison with VCDS
Compared to VCDS, RVCDS is less accurate for estimating

node out-degree degrees. For super source detection,
RVCDS finds source addresses in the entire source space S
that simultaneously hash into all heavy index number sets,
but the VCDS based method collects source addresses from
source addresses that appear in the monitored network, a
small subset of S. Therefore RVCDS may generate more
false super sources. However, RVCDS is more memory effi-
cient for detecting super sources, since the VCDS based
method needs a large amount memory to store addresses
of observed sources. Experimental results in Section 5 will
show that the RVCDS and VCDS based methods have nearly
the same accuracy when a small number of super sources
exist.

4.3. Sampled methods

When m, the length of the bit array A is set smaller than
the total number of sources that appear in the monitored
network, almost all bits in A are set to one. Then VCDS
and RVCDS both fail to estimate node connection degrees.
When the number of sources is large, this can result in a
large bit array A. In this section we propose two other
methods for reducing the size of A. They apply flow sam-
pling to VCDS and RVCDS similar to the method proposed
in [18]. First uniform flow sampling is used to filter most
of the nodes that have a very small number of flows. Each
incoming packet (s,d) uniformly hashes into a number in
the range [0,Z). If the hash result is larger than sZ, the
packet is directly discarded, where 0 < s < 1 is the sampling
rate. Otherwise it is added to VCDS/RVCDS as described pre-
viously. Finally each flow is sampled independently with
probability s. Since only the sampled flows are added to
VCDS/RVCDS, a smaller bit array A can be used compared
to the previous two methods. In what follows we present
the estimators of the node out-degree for these sampling
methods.

4.3.1. Sampled VCDS
For any bit x in the set of bits in A excluding bits in Bi(s)

used by source s, we define ~as to be the probability that x is
not set to one. Let ~uðjÞ to be the probability that x is not set
to one by updates associated with Bl(j) (1 6 l 6 H) that is a
virtual bitmap of any source j and differs from Bi(s). Based
on Theorem 2, we have that Bl(j) contains x with probabil-
ity L/m. When Bl(j) contains x, x is set to one by updates
associated with Bl(j) with probability 1� 1� s

L

� �Oj . Thus,
we have

~uðjÞ ¼ m� L
m
þ L

m
1� s

L

� �Oj

:

Therefore ~as ¼ eUH

~uðsÞ, where eU ¼Qj2S ~uðjÞ. For any given bit in
filtered bitmap Bs not used by s, it is zero if and only if at
least one of its associated bits in Bi(s) (1 6 i 6 H) is not
set to one, which occurs with probability
~ps ¼ 1� ð1� ~asÞH . Similar to the analysis in Section 3, we
can estimate the out-degree of source s as

Oest
s ¼ median16i6HOðiÞs ;

where OðiÞs is defined as

OðiÞs ¼ �
L
s

ln
UBs

L
þ L

s
ln 1� 1� U � UBiðsÞ

m� L

� �H
 !

:

4.3.2. Sampled RVCDS
For RVCDS with a uniform flow sampling probability s,

the out-degree of source s is estimated similarly as follows

Oest
s ¼ median16i6HOðiÞs ;

where OðiÞs (1 6 i 6 R) is defined as

OðiÞs ¼ �
L
s

ln
UBs

L
þ L

s
ln 1� 1� U � UBiðhiðsÞÞ

m� L

� �H
 !

and OðiÞs (R < i 6 H) is defined as

OðiÞs ¼ �
L
s

ln
UBs

L
þ L

s
ln 1� 1� U � UBiðsÞ

m� L

� �H
 !

:

For the reverse computation, the threshold U/ used for
detecting the heavy index number set Ii (i = 1, . . . ,R) is de-
fined as



P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2781
U/ ¼
ULe�

/sbF
2L

m� Lþ Le�
/sbF
2L

:

5. Experiments

We use two packet header traces obtained from the
CERNET (China Education and Research Network) back-
bones, gathered at the Northwest Regional Center. Trace
1 is collected at a 10 Gbps link by using TCPDUMP for
about ten minutes. It consists of 2.1 � 108 packet headers,
and has 2.1 � 105 distinct sources and 8.2 � 105 distinct
flows. Trace 2 is collected at an egress router with a band-
width of 1.5 Gbps for about eleven hours. It consists of
5.8 � 108 packet headers, and has 1.7 � 106 distinct
10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

out−degree

av
er

ag
e 

re
la

tiv
e 

er
ro

r

JM

CSE

VCDS

(a) Trace1

av
er

ag
e 

re
la

tiv
e 

er
ro

r

Fig. 7. Compared results

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

out−degree

av
er

ag
e 

re
la

tiv
e 

er
ro

r

CSE

VCDS (H=1)

VCDS (H=2)

VCDS (H=3)

VCDS (H=15)

(a) Trace1

Fig. 8. Average relative er
sources and 7.0 � 106 distinct flows. We split trace 2 into
30 min pieces segments, referred to as snapshots, and eval-
uate the performance of our methods based on trace 1 and
each trace 2 snapshot. Fig. 6 shows the complementary
cumulative distribution function (CCDF) of node out-de-
gree distribution for trace 1, and the average and variance
of the node out-degree distributions for the trace 2 snap-
shots. In the following experiments, we further compare
our methods to the joint method (JM) [16], the compact
spread estimator (CSE) [21], and the efficient scan detec-
tion estimator (ESD) [18].
5.1. Node out-degree estimation performance

The following experiments are used to evaluate the per-
formance of estimating node out-degrees provided by
10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

out−degree

JM

CSE

VCDS

(b) Trace2

with CSE and JM.

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8

9

out−degree

av
er

ag
e 

re
la

tiv
e 

er
ro

r

CSE

VCDS (H=1)

VCDS (H=2)

VCDS (H=3)

VCDS (H=15)

(b) Trace2

ror for different H.



2782 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
VCDS. The relative out-degree estimation error of node s is

defined as
Oest

s �Osj j
Os

, where Oest
s

�� �� is its estimated out-degree
and Os is its actual out-degree.

Fig. 7 shows the relative errors of node out-degree esti-
mates for VCDS with parameters m = 4 � 106, H = 3 and
L = 1 � 103 compared to CSE and JM under the same mem-
ory usage. It shows that VCDS outperforms CSE and JM.

Fig. 8 shows the relative errors of node out-degree esti-
mates for different H, where m = 4 � 106 and L = 1 � 103.
The accuracy of VCDS first increases with H and then de-
creases with H, which is consistent with Theorem 3. Based
on the comparison of CSE and VCDS with H = 1 under the
same space and computational complexities, we observe
that the new virtual bitmap generating method is more
accurate.
10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

out−degree

av
er

ag
e 

re
la

tiv
e 

er
ro

r

L=0.5×10
3

L=1×10
3

L=2×10
3

L=4×10
3

(a) Trace1

Fig. 9. Average relative e

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

out−degree

av
er

ag
e 

re
la

tiv
e 

er
ro

r

m=1×106

m=2×106

m=4×106

m=8×106

(a) Trace1

av
er

ag
e 

re
la

tiv
e 

er
ro

r

Fig. 10. Average relative e
The impact of L is shown in Fig. 9, where H = 3 and
m = 4 � 106. For a node with a small out-degree, the error
of its estimated out-degree increases with L, since a larger
value of L introduces more unused bits in the node’s virtual
bitmaps, which might be contaminated. However, a smal-
ler value of L generates a larger estimation error when the
out-degree is large similar to the direct bitmap algorithm
[23].

Fig. 10 shows the average relative node out-degree esti-
mation errors for different m, where H = 3 and L = 1 � 103.
We observe that the accuracy of estimated out-degrees is
improved by increasing m, which reduces the ‘‘noise’’,
especially for nodes with small out-degrees. For a node
with a small out-degree, the number of unused bits in its
virtual bitmap is larger than that of a node with a large
10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8

9

out−degree

av
er

ag
e 

re
la

tiv
e 

er
ro

r

L=0.5×103

L=1×103

L=2×103

L=4×103

(b) Trace2

rror for different L.

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

out−degree

m=1×106

m=2×106

m=4×106

m=8×106

(b) Trace2

rror for different m.



Table 2
Number of super sources for different /.

/ (�10�4) 6 8 10 12 14 16

Trace 1 137 94 67 52 38 31
Trace 2 112 78 63 53 46 41

Table 3
Memory usage of VCDS based super source detection for different m.

m 2 � 105 (kB) 4 � 105 (kB) 8 � 105 (kB)

Bit array A 25 50 100
(Trace 1) Hash table 467 596 709
(Trace 2) Hash table 345 448 536

P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2783
out-degree. Therefore the estimated out-degree of a node
with a small out-degree is more sensitive to the ‘‘noise’’.
5.2. Super source detection performance

We use two metrics, false positive percentage and false
negative percentage to evaluate the performance of identi-
fying super sources by our methods. Assume As is the super
source set identified by directly examining all appeared

sources, and bAs is the super source set identified by our
methods. For different threshold /, As, the number of super
sources, is shown as Table 2. The false positive percentage

and false negative percentage are defined as j
bAsnAs j

jbAs j
and jAsnbAs j

jAs j

respectively.
Fig. 11 shows the results of VCDS based super source

detection for different values of m, with L = 1 � 103. We ob-
serve that accuracy improves by increasing m. The total
6 8 10 12 14
0

20

40

60

80

100

φ (×10−4)

Fa
ls

e 
po

si
tiv

e 
pe

rc
en

ta
ge

 (%
)

m=2×105

m=4×105

m=8×105

(a) (Trace1) False positive percentage

Fa
ls

e 
ne

ga
tiv

e 
pe

rc
en

ta
ge

 (%
)

6 8 10 12 14
0

10

20

30

40

φ (×10−4)

Fa
ls

e 
po

si
tiv

e 
pe

rc
en

ta
ge

 (%
)

m=2×105

m=4×105

m=8×105

(c) (Trace2) False positive percentage

Fa
ls

e 
ne

ga
tiv

e 
pe

rc
en

ta
ge

 (%
)

(

Fig. 11. Accuracy of VCDS based super
memory used to store collected source addresses is shown
in Table 3. We found that the number of collected node ad-
dresses increases with m.

Fig. 12 compares the performance of RVCDS based super
source detection to VCDS, CSE, and JM based super source
detection, with m = 3 � 106 and L = 1 � 103. We observe
that RVCDS is less accurate than VCDS, and more accurate
than JM. When / > 0.8, RVCDS almost has the same accu-
racy compared to VCDS and CSE, and is the most memory
efficient as shown in Table 4.

Fig. 13 shows the results of sampled VCDS and sampled
RVCDS for detecting super sources, when m = 105, s = 0.1,
and L = 1 � 103. Compared to ESD, sampled VCDS exhibits
a lower false positive percentage. Compared to sampled
VCDS, sampled RVCDS exhibits slightly higher false positive
percentages. Both VCDS and RVCDS fail to measure node
out-degrees and detect super sources when m = 105, since
all bits in their bit arrays are almost all set to one. As
shown in Table 5, sampled RVCDS needs much less
6 8 10 12 14
0

5

10

15

20

25

30

φ (×10−4)

m=2×105

m=4×105

m=8×105

(b) (Trace1) False negative percentage

6 8 10 12 14
0

5

10

15

20

φ (×10−4)

m=2×105

m=4×105

m=8×105

d) (Trace2) False negative percentage

source detection for different m.



6 8 10 12 14
0

5

10

15

20

φ (×10−4)

Fa
ls

e 
po

si
tiv

e 
pe

rc
en

ta
ge

 (%
) RVCDS

VCDS

JM

CSE

(a) (Trace1) False positive percentage

6 8 10 12 14
1

2

3

4

5

φ (×10−4)

Fa
ls

e 
ne

ga
tiv

e 
pe

rc
en

ta
ge

 (%
) RVCDS

VCDS

JM

CSE

(b) (Trace1) False negative percentage

6 8 10 12 14
0

5

10

15

20

φ (×10−4)

Fa
ls

e 
po

si
tiv

e 
pe

rc
en

ta
ge

 (%
)

RVCDS
VCDS
JM
CSE

(c) (Trace2) False positive percentage

6 8 10 12 14
1

1.5

2

2.5

3

3.5

4

φ (×10−4)

Fa
ls

e 
ne

ga
tiv

e 
pe

rc
en

ta
ge

 (%
)

RVCDS

VCDS

JM

CSE

(d) (Trace2) False negative percentage

Fig. 12. Comparison of accuracies of RVCDS, VCDS, CSE, and JM based super source detection.

Table 4
Comparison of memory usages of RVCDS, VCDS, CSE, and JM based super
source detection.

RVCDS (MB) VCDS (MB) CSE (MB) JM (MB)

Trace 1 0.375 1.17 1.17 1.18
Trace 2 0.375 1.00 1.00 1.01

2784 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
memory compared to sampled VCDS and ESD, since it
needs no extra memory to store source addresses sampled
by the uniform flow sampling.

6. Related work

Estan and Varghese [6] proposed a family of bitmap
algorithms for estimating the total number of distinct
flows on high speed links. To estimate connection degree,
a bitmap for each node needs to be constructed, which
may not be scalable to high speed links carrying flows
associated with a large number of nodes. Several sampling
methods are proposed to detect super nodes [4,5], which
greatly reduce the required memory space and the compu-
tational complexity by storing and processing only a small
subset of network traffic. The accuracies of these methods
greatly depend on the sampling rate.
Zhao et al. [16] proposed a data stream method to mea-
sure node connection degrees. This method is a variant of a
Bloom filter [26] and consists of a two-dimensional bit ar-
ray. Each node is associated with multiple columns in the
bit array that are randomly selected using a group of hash
functions, and a random bit in each of its associated col-
umns is set to one for updating each packet of this node.
The corresponding columns for one particular node can
then be used to estimate its connection degree, since each
column can be viewed as a direct bitmap as proposed in
[23]. Wang et al. [17] modified this data structure and pro-
posed an efficient reserve method to detect super nodes
and nodes with significant connection degree changes.
The direct bitmap method indicates that the number of
rows in the bit array in [16,17] should be set in the order
of thousands to perform the task of estimating connection
degrees of nodes with thousands of flows. However, most
nodes have a small set of flows and only a very small num-
ber of nodes have thousands of flows. This implies that
most columns in the bit array are assigned to nodes with
small connection degrees and contain mostly zeros. To re-
duce this space inefficiency, Yoon et al. [21] built a virtual
bitmap for each node by taking bits randomly from a
shared bit array using a group of hash functions. Each



8 10 12 14 16
20

30

40

50

60

70

φ (×10−4)

Fa
ls

e 
po

si
tiv

e 
pe

rc
en

ta
ge

 (%
)

sampled RVCDS

sampled VCDS

ESD

(a) (Trace1) False positive percentage

8 10 12 14 16
10

12

14

16

18

20

φ (×10−4)

Fa
ls

e 
ne

ga
tiv

e 
pe

rc
en

ta
ge

 (%
)

sampled RVCDS

sampled VCDS

ESD

(b) (Trace1) False negative percentage

8 10 12 14 16
20

25

30

35

40

45

φ (×10−4)

Fa
ls

e 
po

si
tiv

e 
pe

rc
en

ta
ge

 (%
)

sampled RVCDS

sampled VCDS

ESD

(c) (Trace2) False positive percentage

8 10 12 14 16
5

10

15

20

25

30

φ (×10−4)

Fa
ls

e 
ne

ga
tiv

e 
pe

rc
en

ta
ge

 (%
)

sampled RVCDS

sampled VCDS

ESD

(d) (Trace2) False negative percentage

Fig. 13. Accuracy of sampled VCDS and sampled RVCDS compared to ESD.

Table 5
Memory usage of sampled VCDS and sampled RVCDS compared to ESD.

Sampled RVCDS (kB) Sampled VCDS (kB) ESD (kB)

Trace 1 12.5 111 111
Trace 2 12.5 88.0 88.1

P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2785
node’s virtual bitmap is used to estimate its connection de-
gree similar to what is proposed in [23] using a direct bit-
map. Li et al. [18] proposed a super node detection method
that incorporates CSE [21] and a uniform flow sampling
technique. Additional memory is needed for a hash table
to store node addresses for identification of super nodes.
A super node in the hash table is determined by examining
its estimated connection degree. The node address for each
sampled flow is stored if and only if the associated bit in
the shared bit array is set from zero to one. Therefore addi-
tional computation is required for updating each packet,
and a super node might also be missed.
7. Conclusions and future work

In this paper we present a virtual indexing method
VCDS for estimating node connection degrees. With this
method we can generate a very compact sketch of network
traffic, and accurately estimate the connection degree of
each node based on the associated virtual bitmaps. Mean-
while several memory efficient methods are developed for
detecting super nodes. The VCDS based method is accurate
and computationally efficient. However it needs extra
memory space to store node addresses that appear in the
monitored network. The RVCDS based method can identify
super node addresses analytically and needs no extra
memory space but with a little compromised accuracy.
The combined sampled VCDS and sampled RVCDS with a
uniform flow sampling technique to filter nodes with a
small number of flows are more memory efficient. The
experiments based on the actual network traffic show that
the new methods are more memory efficient and accurate
than the existing methods.
Acknowledgments

The research presented in this paper is supported in
part by National Natural Science Foundation (60574087,
61103241, 61103240), and the Fundamental Research
Funds for Central Universities.



2786 P. Wang et al. / Computer Networks 56 (2012) 2773–2787
Appendix A

A.1. Proof of Theorem 1

The proof is by contradiction. Assume to the contrary
that there exists fi;j1 ðsÞ ¼ fi;j2 ðsÞ, for j1 – j2 then

ðj2 � j1Þwi;2ðsÞ 	 0 mod m:

Since 1 6 j2 � j1 6 L � 1
m and m is prime, we have
j2 � j1 – 0 mod m and wi,2(s) 	 0 mod m. Note
wi,2(s) 6m � 1, so we have wi,2(s) = 0. This contradicts with
the definition of wi,2(s) 2 {1,2, . . . ,m � 1}. h

A.2. Proof of Theorem 2

When k1 2 FiðsÞ and A[k1] corresponds the jth
(0 6 j 6 L � 1) element in Bi(s), we have the following
equation from the definition of fi,j(s)

k1 ¼ wi;1ðsÞ þ jwi;2ðsÞ mod m:

For each pair of wi,2(s) 2 {1,2, . . . ,m � 1} and
j 2 {0,1, . . . ,L � 1}, there is one and only one virtual bitmap
containing A[k1], since wi,1(s) is determined as

wi;1ðsÞ ¼ k1 � jwi;2ðsÞ mod m:

Therefore the total number of distinct virtual bitmaps con-
taining A[k1] is L(m � 1).

When k1; k2 2 FiðsÞ, we have

k1 ¼ wi;1ðsÞ þ j1wi;2ðsÞ mod m

k2 ¼ wi;1ðsÞ þ j2wi;2ðsÞ mod m

(
where 0 6 j1, j2 6 L � 1, and j1 – j2. Thus

ðj1 � j2Þwi;1ðsÞ ¼ j1k2 � j2k1 mod m
ðj1 � j2Þwi;2ðsÞ ¼ k1 � k2 mod m:

(
Since j1 � j2 – 0 mod m, we have (j1 � j2)m�1 	 1 mod m
from the Euler-Fermat theorem [27]. Then wi,1(s) and
wi,2(s) are determined as

wi;1ðsÞ ¼ ðj1 � j2Þ
m�2ðj1k2 � j2k1Þ mod m

wi;2ðsÞ ¼ ðj1 � j2Þ
m�2ðk1 � k2Þ mod m:

(

It indicates that there is one and only one virtual bitmap
containing both A[k1] and A[k2] for each pair of j1 and j2.
Therefore the total number of distinct virtual bitmaps
containing both A[k1] and A[k2] is L(L � 1), the number of
distinct pairs of j1 and j2.

Thus, there are L(m � 1) � L(L � 1) = L(m � L) distinct
virtual bitmaps containing A[k1] but not A[k2], and the total
number of distinct virtual bitmaps not containing A[k1] or
A[k2] either is m(m � 1) � L(L � 1) � 2L(m � L).

Based on the above analysis, Theorem 2 is proved since
each virtual bitmap Bi(s) is selected uniformly from a total
of m(m � 1) distinct virtual bitmaps. h

A.3. Proof of Theorem 3

Define y = lnk(H). Then its first derivative is

dy
dH
¼ lnð1�UHÞ � HUH ln U

1�UH ;
and second derivative is

d2y

dH2 ¼
UHð2� 2UH � H ln UÞ ln U

ð1�UHÞ2
;

It can be easily shown that dy
dH < 0 when H 2 0;� 1

ln U

� �
and

dy
dH > 0 when H 2 � 1

ln U ;þ1
� �

, therefore function k(H) de-
creases with H 2 0;� 1

ln U

� �
and increases with

H 2 � 1
ln U ;þ1

� �
. Meanwhile we have dy

dH

���
H¼� 1

ln U

¼ 0 and

d2y
dH2

���
H¼� 1

ln U

¼ 0, so the optimal value of k(H) is obtained at

H ¼ � 1
ln U. h

References

[1] M. Roesch, Snort-lightweight intrusion detection for networks, in:
Proceedings of the USENIX LISA Conference on System
Administration, 1999, pp. 229–238.

[2] D. Plonka, Flowscan: a network traffic flow reporting and
visualization tool, in: Proceedings of USENIX LISA, 2000, pp. 305–
317.

[3] C. Estan, G. Varghese, New directions in traffic measurement and
accounting, in: Proceedings of ACM SIGCOMM, 2002, pp. 323–336.

[4] S. Venkataraman, D. Song, P.B. Gibbons, A. Blum, New streaming
algorithms for fast detection of superspreaders, in: Proceedings of
NDSS, 2005, pp. 149–166.

[5] J. Cao, Y. Jin, A. Chen, T. Bu, Z. Zhang, Identifying high cardinality
Internet hosts, in: Proceedings of IEEE INFOCOM, 2009, pp. 810–818.

[6] C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for counting active
flows on high speed links, in: Proceedings of ACM SIGCOMM IMC,
2003, pp. 182–209.

[7] A. Kumar, J. Xu, J. Wang, O. Spatschek, L. Li, Space-code Bloom filter
for efficient per-flow traffic measurement, in: Proceedings of IEEE
INFOCOM, 2004, pp. 1762–1773.

[8] Y. Zhang, S. Singh, S. Sen, N.G. Duffield, C. Lund, Online identification
of hierarchical heavy hitters: algorithms, evaluation, and application,
in: Proceedings of ACM SIGCOMM IMC, 2004, pp. 101–114.

[9] W. Feng, Y. Huang, X. Li, Reversible sketch data structure, Journal of
Tsinghua University (Sci & Tech) 48 (2008) 1621–1622.

[10] J. Mai, A. Sridharan, H. Zang, C.-N. Chuah, Fast filtered sampling:
catching mice and elephants with one net, Elsevier Computer
Networks 54 (2010) 1885–1898.

[11] B. Krishnamurthy, S. Sen, Y. Zhang, Y. Chen, Sketch-based change
detection: methods, evaluation, and applications, in: Proceedings of
ACM SIGCOMM IMC, 2003, pp. 234–247.

[12] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, E. Parsons, Y. Zhang, P.
Dinda, M. yang Kao, G. Memik, Reversible sketches: enabling
monitoring and analysis over high-speed data streams, IEEE/ACM
Transactions on Networking 15 (2007) 1059–1072.

[13] G. Cormode, S. Muthukrishnan, What’s hot and what’s not: tracking
most frequent items dynamically, in: Proceedings of ACM PODC,
2003, pp. 296–306.

[14] A. Kumar, M. Sung, J. Xu, J. Wang, Data streaming algorithms for
efficient and accurate estimation of flow size distribution, in:
Proceedings of ACM SIGMETRICS, 2004, pp. 177–188.

[15] B. Ribeiro, T. Ye, D. Towsley, A resource-minimalist flow size
histogram estimator, in: Proceedings of ACM SIGCOMM IMC, 2008,
pp. 285–290.

[16] Q. Zhao, A. Kumar, J. Xu, Joint data streaming and sampling
techniques for detection of super sources and destinations, in:
Proceedings of ACM SIGCOMM IMC, 2005, pp. 77–90.

[17] P. Wang, X. Guan, T. Qin, Q. Huang, A data streaming method for
monitoring host connection degrees of high-speed links, IEEE
Transactions on Information Forensics and Security 6 (2011) 1086–
1098.

[18] T. Li, S. Chen, W. Luo, M. Zhang, Scan detection in high-speed
networks based on optimal dynamic bit sharing, in: Proceedings of
IEEE INFOCOM, 2011, pp. 3200–3208.

[19] A. Lall, V. Sekar, M. Ogihara, J. Xu, H. Zhang, Data streaming
algorithms for estimating entropy of network traffic, in: Proceedings
of ACM SIGMETRICS, 2006, pp. 145–156.

[20] H. Zhao, A. Lall, O. Spatscheck, J. Wang, J. Xu, A data streaming
algorithm for estimating entropies of OD flows, in: Proceedings of
ACM SIGCOMM IMC, 2007, pp. 279–290.



P. Wang et al. / Computer Networks 56 (2012) 2773–2787 2787
[21] M. Yoon, T. Li, S. Chen, J.K. Peir, Fit a spread estimator in small
memory, in: Proceedings of IEEE INFOCOM, 2009, pp. 504–512.

[22] X. Guan, P. Wang, T. Qin, A new data streaming method for locating
hosts with large connection degree, in: Proceedings of IEEE
GLOBECOM, 2009, pp. 6421–6426.

[23] K. Whang, B.T. Vander-zanden, H.M. Taylor, A linear-time
probabilistic counting algorithm for database applications, IEEE
Transaction of Database Systems 15 (1990) 208–229.

[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, second ed., MIT Press, Cambridge, MA, 2001.

[25] T. Motwani, P. Raghavan, Randomized Algorithms, Cambridge
University Press, New York, NY, 1995.

[26] B.H. Bloom, Space/time trade-offs in hash coding with allowable
errors, Communications of the ACM 13 (1970) 422–426.

[27] W. Stallings, Cryptography and Network Security: Principles and
Practice, fourth ed., Pearson Education, Upper Saddle River, NJ, 1998.

Pinghui Wang received the B.S. and M.S.
degrees in information engineering from Xi’an
Jiaotong University, Xi’an, China, in 2006,
2008 respectively. He is currently a Ph.D.
candidate with the Systems Engineering
Institute and SKLMS Laboratory, Xi’an Jiao-
tong University under the supervision of Prof.
Xiaohong Guan. His research interests include
Internet traffic measurement and modeling,
traffic classification, abnormal detection, and
online social network measurement.
Xiaohong Guan received the B.S. and M.S.
degrees in automatic control from Tsinghua
University, Beijing, China, in 1982 and 1985,
respectively, and the Ph.D. degree in electrical
engineering from the University of Connecti-
cut, Storrs, US, in 1993. From 1993 to 1995, he
was a consulting engineer at PG&E. From 1985
to 1988, he was with the Systems Engineering
Institute, Xi’an Jiaotong University, Xi’an,
China. From January 1999 to February 2000,
he was with the Division of Engineering and
Applied Science, Harvard University, Cam-

bridge, MA. Since 1995, he has been with the Systems Engineering
Institute, Xi’an Jiaotong University, and was appointed Cheung Kong
Professor of Systems Engineering in 1999, and dean of the School of

Electronic and Information Engineering in 2008. Since 2001 he has been
the director of the Center for Intelligent and Networked Systems, Tsing-
hua University, and served as head of the Department of Automation,
2003–2008. He is an Editor of IEEE Transactions on Power Systems and an
Associate Editor of Automata. His research interests include allocation and
scheduling of complex networked resources, network security, and sensor
networks. He has been elected Fellow of IEEE.

Don Towsley holds a B.A. in Physics (1971)
and a Ph.D. in Computer Science (1975) from
University of Texas. From 1976 to 1985 he
was a member of the faculty of the Depart-
ment of Electrical and Computer Engineering
at the University of Massachusetts, Amherst.
He is currently a Distinguished Professor at
the University of Massachusetts in the
Department of Computer Science. He has held
visiting positions at IBM T.J. Watson Research
Center, Yorktown Heights, NY; Laboratoire
MASI, Paris, France; INRIA, Sophia-Antipolis,

France; AT&T Labs-Research, Florham Park, NJ; and Microsoft Research
Lab, Cambridge, UK. His research interests include networks and perfor-
mance evaluation. He currently serves as Editor-in-Chief of IEEE/ACM

Transactions on Networking and on the editorial boards of Journal of the
ACM, and IEEE Journal on Selected Areas in Communications, and has
previously served on numerous other editorial boards. He was Program
Co-chair of the joint ACM SIGMETRICS and PERFORMANCE 92 conference
and the Performance 2002 conference. He is a member of ACM and ORSA,
and Chair of IFIP Working Group 7.3. He has received the 2007 IEEE Koji
Kobayashi Award, the 2007 ACM SIGMETRICS Achievement Award, the
1998 IEEE Communications Society William Bennett Best Paper Award,
and numerous best conference/workshop paper awards. Last, he has been
elected Fellow of both the ACM and IEEE.

Jing Tao received the B.S and M.S degrees in
automation engineering from Xi’an Jiaotong
University, Xi’an, China, in 2001, 2006
respectively. He is currently a teacher in Xi’an
Jiaotong University and on-the-job Ph.D.
candidate with the Systems Engineering
Institute and SKLMS Laboratory, Xi’an Jiao-
tong University under the supervision of Prof.
Xiaohong Guan. His research interests include
Internet traffic measurement and modeling,
traffic classification, abnormal detection, and
botnet.


	Virtual indexing based methods for estimating node connection degrees
	1 Introduction
	2 Data streaming model
	3 Virtual connection degree sketch
	3.1 Data structure
	3.2 Update procedure
	3.3 Connection degree estimator
	3.4 Parameter configuration

	4 Super node detection
	4.1 VCDS based method
	4.1.1 Update procedure
	4.1.2 Super node detection
	4.1.3 Parameter configuration

	4.2 RVCDS based method
	4.2.1 RVCDS
	4.2.2 Update procedure
	4.2.3 Connection degree estimator
	4.2.4 Reverse computation
	4.2.5 Parameter configuration
	4.2.6 Comparison with VCDS

	4.3 Sampled methods
	4.3.1 Sampled VCDS
	4.3.2 Sampled RVCDS


	5 Experiments
	5.1 Node out-degree estimation performance
	5.2 Super source detection performance

	6 Related work
	7 Conclusions and future work
	Acknowledgments
	Appendix A 
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3

	References


