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Abstract—The military environment presents special chal-
lenges for wireless mesh networking. In addition to optimal
use of scarce radio resources, dependable network operation
is critical: given frequent link and topology changes, rapid
recovery of connectivity may be vital for mission success. This
paper proposes a routing algorithm for wireless mesh networks
with the primary goal of maximizing connectivity while limiting
overhead. Rather than using one or more disjoint routes between
a source and destination, a set of non-disjoint routes, or braid, is
selected. To adapt to link changes, local rerouting is performed
within the braid, thus avoiding network-wide recalculations. We
analytically characterize the source-destination connectivity of
the braid. Through simulation, we compare the reliability of
braided routing and various other MANET routing protocols,
including AODV, and quantify the relative amounts of control
overhead incurred by braided routing and AODV.

I. INTRODUCTION

Wireless networks, and MANETs in particular, are charac-
terized by time-varying link characteristics and network topol-
ogy. In such environments, the network must accommodate
these changes, providing end-end packet delivery while at the
same time incurring low control overhead. Yet this ideal is
difficult to meet in practice: end-end delivery requires some
form of end-end (potentially global) coordination, and frequent
changes make adaptation to each and every change costly. Link
and mobility characteristics may also be difficult to estimate
a priori, making proactive or predictive routing approaches
difficult to implement in practice.

In this paper, we investigate robust routing in MANETs.
By “robust” we mean that although a particular routing con-
figuration (in our case, a set of multipath routes) may not
be optimal for a single specific configuration (e.g., specific
network topology and link characteristics), it will perform
well over a larger set of likely network configurations: i.e., it
is robust to changes without requiring global recomputation.
The issues of local versus global adaptation to link/topology
changes, and the timescale(s) at which this adaptation occurs
(and the concomitant overhead incurred) are central to the
MANET routing problem. There is a growing recognition [2],
[3], [4] that the scale and dynamic nature of MANETS,
especially in military deployments, present severe challenges
for classical MANET protocols, which are conceptually based
on maintaining a consistent network-wide topological view-
point. In contrast, the approach to MANET routing explored
in this paper is based on the intuition that a global routing

configuration should be determined at a coarse time scale (e.g.,
periodically, every T time units), with local adaptation to link
or topology changes occurring at finer times scales within the
current global configuration.

This paper specifically investigates an approach towards
MANET routing, which we refer to as “braided routing,” that
is robust to changes in link characteristics and network topol-
ogy. Informally, braided routing operates at two timescales.
At the longer timescale, a subgraph of links and nodes is
constructed that connects a source and destination. Unlike
many existing “backup routing” approaches that pre-compute
disjoint paths, e.g., [10], or partially disjoint paths, e.g., [6],
a braid does not impose such requirements on the subgraph.
Like approaches such as [6], braided routing performs local
adaptation in response to link and topology changes. But
unlike approaches that route packets over the entire network
topology to achieve robustness (e.g., [23]), the subgraph over
which packets are forwarded in a braid is purposefully limited
to limit control overhead (e.g., for braid construction and
state maintenance). The tradeoff between the control overhead
incurred (which depends in turn on the size of the braid and
the interval at which the braid is re-computed), and packet
delivery performance will be of principal concern to us. Our
results show that braided routing can indeed achieve a perfor-
mance gain over a traditional MANET routing algorithm such
as AODV and other approaches such as k-disjoint routing,
without significantly increasing overhead.

We analyze braided routing from several different view-
points in order to fully explore and understand its properties.
We analytically characterize the reliability (the probability that
the source and destination nodes have a contemporaneous
path) of a class of braids, their optimality properties, and
counter-examples to conjectured optimality properties in a
well-structured (grid) network. We also compare the reliability
of braided, disjoint-path, and full-network routing in Matlab
simulations in both torus and random networks. Finally, we
investigate the control overhead of braided routing and AODV
from implementations of these two protocols in a GloMoSim
simulation of a mobile scenario. In addition to quantifying
the gains and overheads of braided routing, our Matlab and
GloMoSim simulations also illustrate the impact and subtleties
involved with using different underlying network models.

The remainder of this paper is structured as follows. In
Section II, we discuss related work on backup routing. In



Section III we describe the reliability metric we use as a
measure of robustness and in Section IV we present analytic
and experimental results evaluating our braid structure in terms
of reliability. Then in Section V we present a simple algorithm
for constructing and maintaining a braid and in Section VI we
present simulation results evaluating its performance. Finally,
Section VII summarizes our results and outlines future work.

II. RELATED WORK

A variety of work has considered the use of disjoint routes
in ad hoc networks, including [12], [15], [18], [21]. In addition
to the overhead cost of finding disjoint paths, if any link in a
path breaks then the path itself breaks. Detection and recovery
from failures is also expensive since it cannot be carried out
locally. These considerations have thus motivated research on
the use of non-disjoint paths.

The backup routing algorithm of [13] reinforces the path se-
lected by AODV [19] by allowing nodes that overhear AODV
control messages to become part of the routing subgraph, to be
used only when links on the AODV path break. [22] proposes
duct routing in mobile packet radio networks, where nodes
neighbouring the primary route may be used. Specifically,
when sending packets to the ith hop node along the primary
path, one of either the ith hop node or one of its neighbours
will hear the transmission first. The first node that hears the
transmission will forward the packet to the (i+1)st hop node;
the other nodes will overhear the forwarding transmission and
refrain from transmitting. Considering an underwater network,
[17] proposes a geo-routing mesh using only nodes within
a given distance from the vector from the source or current
forwarding node to the sink. We note that [22] (when all
nodes neighbouring the primary path are used) and [13], [17]
build routing subgraphs which structurally correspond to what
we will describe in Section IV as a 1-hop braid. Braided
multipaths are proposed in [6] to protect against node failure.
A braided multipath corresponds to selecting a primary path
and then adding an additional path for each node i on the
primary path that does not use node i, possibly reusing parts
of the primary path.

Specifically considering reliability, [16] argues for the re-
liability benefits of using non-disjoint paths in wireless mesh
networks, showing gains over disjoint paths. [7] considers the
problem of finding the most reliable subgraph for routing. Due
to the #P-hardness of this problem, they propose a method to
approximately compute reliability and a routing algorithm that
leverages known contact probabilities between node pairs to
select a routing subgraph.

III. WHAT DO WE MEAN BY ROBUST?

Informally, we consider a routing subgraph to be robust if
there is at least one path up between the source and destination
with high probability. If a subgraph is robust, then even if a
link or path between the source and destination breaks, an
alternative link or path is available with (high) probability.
In reliability theory [5], the probability that there is at least
one path up between a source and destination is known as

2-terminal reliability, a metric we will use for evaluating
the robustness of different routing subgraphs and providing
intuition about what types of graphs are “highly” reliable.

Following Colbourn [5], the 2-terminal reliability of a graph
G = (V,E) with IID edges up with probability p is given by,

R(G, p) =
m∑

i=0

Nip
i(1− p)m−i (1)

where m = |E|, Ni is the number of pathsets with i edges,
and pi(1−p)m−i is the probability that a pathset with i edges
is up. A pathset is defined as a subset of edges for which there
is a route between the two terminals.

Ideally, for a given source and destination, and specified
number of edges or nodes, we would select the subgraph
that has maximum 2-terminal reliability while using at most
the specified number of links or nodes. Computing reliability
exactly, however, is generally #P -complete [5], as is solving
the corresponding optimization problem [7]. For all-terminal
reliability (the probability that a graph is connected), [9] gives
a randomized fully polynomial time approximation scheme.
For very reliable graphs, [9] shows that only small cuts are
likely to fail and that there are only a polynomial number
of such cuts, otherwise Monte Carlo simulation may be used.
The approach in [9] could presumably be used to approximate
2-terminal reliability, although this does not efficiently solve
the optimization problem, nor lend itself easily to theoretical
comparisons of the reliability of different subgraphs.

Given the difficulty of exactly computing reliability, except
for relatively simple networks, we also use Monte Carlo
simulation to estimate reliability. In a discrete-time simulation
of a time-varying network, we can check whether there is a
path from the source to the destination at each time-step. The
ratio of the number of time-steps when there was a path and
the total number of time-steps simulated is then an estimate of
the probability of there being at least one path from source to
destination. We refer to computing the reliability in this way
as “computing the reliability experimentally.”

IV. BRAIDED GRAPHS

In this section, we characterize the properties of braids
in well-structured grid networks. Our goal is to determine
how well a braided routing subgraph performs with respect
to 2-terminal reliability given a fixed number of nodes/links
in the subgraph. These results then provide valuable insight
into more general network topologies, which are analytically
intractable. We use the idealised network model shown in
Figure 1: the source s and destination d lie in a bounded
half-plane grid, with N nodes on the shortest path between
them. All links are IID with reliability p.

A. The k-hop Braid

Our goal here is to explore the use of a k-hop braid built
around the best (most reliable) path. A k-hop braid consists of
the path itself, and all nodes and links within k hops of nodes
on the best path. Figure 2 shows an example best path, 1-hop
braid, and 2-hop braid between a source and destination.
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Fig. 1. Model used in Section IV, comprising source (s) and destination (d)
on a line in a bounded half-plane grid.
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Fig. 2. Example best path, 1-hop braid, and 2-hop braid between a source
(s) and destination (d).

In the small p limit, the reliability polynomial (1) will be
dominated by terms from shorter paths; this indicates that the
most reliable path is an appropriate part of the braid, at least in
this limit. Conversely, [5], [20] gives an alternative expression
for (1) as a polynomial in q = 1− p as

R(G, p) = 1−
∑
Ci∈C

P (Ei) (2)

P (Ei) =

[∏
e∈Ci

q

]1−
∑

Cj∈L(Ci)

P (Ej)∏
e∈Ci∩Cj

q


where C is the set of minimal cuts separating source and
destination, and L(Ci) is the set of minimal cuts lying en-
tirely between the source and Ci. In the small q limit, the
unreliability 1 − R is dominated by the smallest cuts, So we
observe that a good braid will have large minimal cut: i.e.,
that the braid should widen uniformly along the best path. We
show this for k = 1 and arbitrary p in Lemma 1.

Lemma 1: When incrementally adding nodes (one or two at
a time), adding all nodes one hop away from the strip before
adding any nodes that are two hops away maximizes reliability.

Proof: Consider the top graph in Figure 3 and suppose we can
add either one of the grey nodes or the black node. Adding
only one of the grey nodes will not affect the reliability from
s to d, as no links will be reinforced, while adding the black
node will increase the probability of getting from nodes d0

and d1 to node d.
Now consider adding two nodes at a time. Again consider

the topologies in Figure 3. We partition the top graph in
Figure 3 into the sub-graphs shown in the bottom graph; note
that each edge appears only once, although nodes may be
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Fig. 3. Graphs used to decide whether to add two nodes on top of the 2×N
strip or one node to the end. The bottom graph decomposes the top graph so
that we need only compute the reliability for the subgraphs of interest.

Two Nodes on Top One Node at End

P (q0q1|s0s1) = P (q0|s0)P (q1|s1) p(p + p3 − p4) p · p

P (q0 q̄1|s0s1) = P (q0|s0)P (q̄1|s1) p(1 − p − p3 + p4) p(1 − p)
P (q̄0q1|s0s1) = P (q̄0|s0)P (q1|s1) (1 − p)(p + p3 − p4) (1 − p)p

P (q0q1|s0s̄1) = P (q0|s0)P (q1|s̄1) 0 0
P (q0 q̄1|s0s̄1) = P (q0|s0)P (q̄1|s̄1) p p
P (q̄0q1|s0s̄1) = P (q̄0|s0)P (q1|s̄1) 0 0
P (q0q1|s̄0s1) = P (q0|s̄0)P (q1|s1) 0 0
P (q0 q̄1|s̄0s1) = P (q0|s̄0)P (q̄1|s1) 0 0
P (q̄0q1|s̄0s1) = P (q̄0|s̄0)P (q1|s1) p + p3 − p4 p

P (d|d0d1) p ≤ p + p3 − p4

P (d|d0d̄1) p p + p3 − p4

P (d|d̄0d1) p2 2p2 − p4

TABLE I
RELIABILITY COMPUTATIONS FOR THE BOTTOM SUBGRAPHS IN FIGURE 3.

repeated (which will not affect the reliability). Using sub-graph
decompositions we decompose the reliability by conditioning
on the intermediate nodes as follows. We first condition on
intermediate nodes s0 and s1 to obtain,

P (d|s) = P (d|s0s1)P (s0s1|s) + P (d|s0s̄1)P (s0s̄1|s)
+P (d|s̄0s1)P (s̄0s1|s) (3)

where e.g., P (d|s0s̄1) is the probability that node d can be
reached given that node s0 but not s1 can be reached, and
P (s0s̄1|s) is the probability that node s0 but not s1 can be
reached given that node s can be reached. We recursively
condition on nodes {d0, d1} and {q0, q1} to obtain an equation
for P (d|s) as the sum of 27 terms (see [14] for details).

We use the resulting equation to compute both the reliability
when adding both of the grey nodes in Figure 3 and when
adding the black node. Ignoring those terms that correspond to
subgraphs that are identical for both we need only compute the
reliability for the {s0, s1} → {q0, q1} and {d0, d1} → d sub-
graphs. These calculations are shown in Table 1. Examining
Table 1 shows that for each P ({q0, q1}|{s0, s1})P (d|{d0, d1})
product, adding the black node to the end of the 2×N node
strip gives the same or higher reliability as compared with
adding the two grey nodes anywhere on top of the strip. ♦

Note that this result is actually more general than stated as
it does not depend on the form of the subgraph between s and
si, nor between qi and di. It also follows from Lemma 1 that
for short paths (with n ≤ 5 nodes), that given n additional
nodes, reliability is maximized by the 2× n node strip.

The results above suggest that k-hop braids have several
desirable reliability properties, at least in this well-structured
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Fig. 4. Two topologies, both using 18 nodes.
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Fig. 5. Reliability comparison of “strip” and “pyramid” graphs from Figure 4.
Reliability is averaged over 100 runs of 10,000 time-steps each. 95% bootstrap
confidence intervals over the runs are shown.

environment, giving confidence in studying k-hop braids in
other scenarios where the optimum subgraph cannot be deter-
mined. Referring to Figure 1, the k×N node strip from s to
d is a (k − 1)-hop braid. We close with two conjectures:
Conjecture 1: Given N additional nodes (and their associ-
ated edges), the 2×N node strip is the most reliable subgraph.
Conjecture 2: Given 2N additional nodes, the 3 × N
node strip is more reliable than the corresponding pyramid.
Comparing the 3×N node strip for N = 6 versus the 18-node
pyramid (see Figure 4), we find experimentally that the strip
has higher reliability than the pyramid, as shown in Figure 5.

B. Exact Results for 2×N Node Strip
For the 2×N node strip, we determine an exact expression

for reliability. Define RN ≡ P(s is connected to d), SN ≡ P(s
is connected to d′), and TN ≡ P(s is connected to both d and
d′), where d′ is the node diagonally opposite to s. Then the
recurrence relationships as the strip grows in length by 1 are,

RN+1 = RNp+ SNp
2 − TNp

3

SN+1 = RNp
2 + SNp− TNp

3 (4)
TN+1 = (RN + SN )p2 + TN (p2 − 2p3)

This is a simple set of linear relations; the equation for RN −
SN is trivial, and the remaining equations for RN + SN and
TN can be solved as a 2× 2 matrix, see [14]. Then,

RN =
1
2

(C0(pλ0)N + C1(pλ1)N + (1− p)(λ0λ1)N )

λ0,1 =
1
2

(
1 + 2p(1− p)±

√
1 + [2p(1− p)]2

)
(5)

C0 =
(1 + p)2 − 2p3 − λ1(1 + p)

λ0 − λ1

C1 = − (1 + p)2 − 2p3 − λ0(1 + p)
λ0 − λ1

s d s d

s sd d

A1

B1

A2

B2

Fig. 6. Counterexamples when adding links rather than nodes.

Note that λ0, λ1 and p(1− p) = λ0λ1 are the eigenvalues of
the recurrence relation, and the largest (λ0) controls the large
N behaviour. The evolution of RN with N indicates that as
s and d get one hop further apart, the reliability of the strip
decreases by a factor of pλ0 > p, compared to a factor of p
for the single path or a pair of disjoint paths. For p→ 1,

pλ0 → 1− (1− p)2 +O[(1− p)3]

which is a much slower degradation of robustness. We return
to this theme in a more general setting in the next subsection.

We also use (5) to establish a subsidiary result about the
growth of the 2 × N node strip: that it is optimal to add
nodes contiguously. We consider adding nodes to give a total
of L+M links 1 hop away the shortest path, either in a single
group of L + M + 1 nodes or separate groups of L + 1 and
M+1. Formally, we show that (see [14]) RL+M−1 ≥ RLRM

for arbitrary L and M , despite the use of fewer nodes/links.

C. Comparison with Disjoint Path Routing

A degenerate case of a 1-hop braid, where all internal links
are missing, is a pair of disjoint paths which use neighbouring
nodes. Does the optimal braid with a constraint on the number
of links contain holes of this type? The answer depends on the
measure of overhead and the value of p. Consider the examples
in Figure 6 of a partial braid and a pair of disjoint paths.
Graphs A1 and A2 both use six links total, however R(A1) =
p2 + p4 − p5 while R(A2) = p2 + p4 − p6. Hence, graph A2

is more reliable than graph A1 for all values of p. Similarly,
graphs B1 and B2 both use eight links total, however R(B1) =
p3 + 3p5 − 2p6 − 3p7 + 2p8 while R(B2) = p3 + p5 − p8.
Now, however, graph B2 is more reliable than graph B1 when
p >

√
2/3, i.e., the braid is only more reliable for low values

of p. More generally (see [14]), for even N = 2n+ 2 and 2N
links, a pair of disjoint paths, containing 2n+1 and 2n+3 links
respectively, has reliability Pdisjoint = p2n+1(1+p2−p2n+3).
In comparison, a braided path of length n+1 links, combined
with a path of single links of length n has reliability Pbraided =
pnRn+2. The reliabilities match at a critical value of p, which
scales with N according to the following equation,

1− Pcritical →
2
N

log
1 +
√

5
2

(6)

i.e., the regime in which the braid is more reliable becomes
larger for larger networks. Thus, one criterion for evaluating
the applicability of braided routing is that the product of the
network diameter and the mean link unavailability be greater
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Fig. 7. Reliability of different routing subgraphs. Reliability is averaged over 400 runs of 100 time-steps. 95% confidence intervals over the runs are shown.
As not all sets of samples were normally distributed, bootstrap confidence intervals were computed using Matlab (hence the error bars are not symmetric).

than a threshold value of approximately 1. Note that this
analysis assumes that “links used” is the appropriate overhead
metric; an alternative metric is “nodes used,” for which the
appropriate comparison is between the disjoint paths and the
full 1-hop braid, and the latter is always more reliable.

We extend this analysis to k-hop braids and k′-disjoint
paths, studying how the reliability scales with increasing
N by one hop, for large values of N . For disjoint paths,
the reliability decreases by factor p for each additional hop
regardless of the value of k′ (which only affects a fixed overall
coefficient). For the k-hop braid an exact expression is not
available (except for k = 1 as given above); however, we
can use the Provan-Ball equation (2) to find the leading terms
in the reliability in the limit of small q. As discussed above,
these leading terms correspond to the minimum cuts in the
network; as the source-destination distance increases by 1,
there is a single additional minimum cut of length k+1. Thus
the corresponding reliability decrease is just 1 − (1 − p)k+1

which can be made arbitrarily small by increasing k. Even for
moderate values of p, it is possible to grow to large networks
without compromising robustness. These results confirm that,
in terms of reliability, braids will be most effective for large
diameter networks with relatively unreliable links.

D. Simulation Results

In this section we compare the reliability of a 1-hop braid
with that of the shortest path, the two shortest disjoint paths,
and the entire graph, using a time-varying network simulated

in Matlab. We first describe the model and then present results.
1) Network model: Consider a graph G = {V,E} with

nodes V and edges E. We examine (i) an
√
|V |×

√
|V | torus

where |E| comprises the set of all edges in the torus and
(ii) a random model, where |V | nodes are placed uniformly
randomly and independently in the plane, and edges exist
between those nodes within a communication radius L of each
other. We assume links are IID; to model link changes, we use
a two-state Markov model where links stay up with probability
p and stay down with probability q at each time-step.

In our experiments, we use (i) a 10× 10 torus and (ii) 100
nodes distributed randomly in an area of size 10 × 10 using
a communication radius L = 2. We perform 400 simulation
runs, each comprising 100 timesteps. In each run, a random
source-destination pair is selected. For each time-step, we
check whether each link is up. For the two-state Markov model
we use p = {0.75, 0.85, 0.95} and q = 0.5. We use the steady-
state probability that a link is up to initially select which links
are up or down. The routing sub-graph for each algorithm is
recomputed every T timesteps, using only links that are up in
the graph at the time of re-computation. All algorithms were
evaluated on identical network topologies, and we estimate the
reliability experimentally as discussed in Section III.

2) Results: Figure 7 shows that for all p, that as the update
interval T is increased, the reliability of the selected routing
subgraph decreases and eventually reaches steady-state. For
the torus, Figure 7(a) shows that for p = 0.75, the reliability
of the 1-hop braid, 2-shortest-disjoint paths, and shortest path
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Fig. 8. Overhead of 1-hop braid vs. that of the shortest path, the two shortest
disjoint paths, and the entire graph. Reliability was estimated experimentally.

are all within a range of 0.1. Increasing p to 0.85 in Figure 7(b)
shows a larger gap in reliability between the 1-hop braid and
the 2-shortest disjoint paths, and also a larger gap between
the braid and the full graph. Using p = 0.95 in Figure 7(c)
shows an even larger gap in reliability between the 1-hop braid
and the 2-shortest disjoint paths, but now a much smaller gap
between the braid and the full graph. For the random model,
Figures 7(d), (e), and (f) again show that for all p, the 1-hop
braid has consistently higher reliability than the shortest path
or 2-shortest disjoint paths, now as much as 0.4 greater than
the 2-shortest disjoint paths when p = 0.75 or p = 0.85.
This is in part a consequence of there not always being 2
disjoint paths in the graph (unlike in the torus). When p =
0.95, in Figure 7(f), the reliability achieved by the 1-hop braid
is almost identical to that achieved by the full graph.

Figure 8 plots the reliability gain and number of additional
nodes used over the shortest path by the 2-shortest disjoint
paths, 1-hop braid, and full graph. Each point represents a
simulation run (i.e., a selected source destination pair); for
clarity we show only results for when T = 5. For the torus,
Figure 8(a) indicates that the 1-hop braid provides an increase
in reliability while using fewer than 20 extra nodes. For the
random model, Figure 8(b) indicates that while the braid
provides consistent and significant (up to about 0.4) gains in
reliability, it also uses around 40 more nodes than the shortest
path, but fewer than half the nodes used by the full graph.

In summary, the torus results indicate that the 1-hop braid
can achieve reliability greater than that of the shortest path

TABLE II
ROBUST ROUTING ALGORITHM.

1 Let G be graph of entire network
2 Loop every T :
3 Select “best” path P from graph G
4 Build k-hop braid around P to obtain graph B
5 Perform local forwarding on B

and the 2-shortest disjoint paths, and that the gains increase
as p increases. We expect, however, that using a 2-hop braid
would increase the reliability gain of the braid for small p. The
results from the random model indicate that while using more
nodes, the 1-hop braid can achieve reliability close to that of
the full graph, and that the gain increases as p decreases.

V. ROBUST ROUTING ALGORITHM

In this section we outline our robust routing algorithm;
summarized in Table 3. The important features are as follows.

Recomputing routes periodically. We select a routing sub-
graph that can be found efficiently, and that is expected to
perform “well” over the time period T during which it is not
updated. Based on our analysis in the previous section, we
choose this subgraph to be a k-hop braid.

Local forwarding within braid. Given the braid sub-graph
B, rather than forwarding packets over a path, we consider
all of B: i.e., we make local forwarding decisions to select
the next hop out of all possible next hops within B. While
the sub-graph B changes every T timesteps, local forwarding
decisions are computed by nodes every timestep. A simple
approach to perform local forwarding (which we use to obtain
simulation results in Section VI) is to have a node select its
next hop based on which of its outgoing links have dropped
packets; we describe this approach further in the next section.

VI. EVALUATION

In this section we compare the performance of the braided
routing algorithm using a 1-hop braid, with that of AODV [19].
We first describe our implementation in GloMoSim [11], and
then present experimental results.

A. Algorithm Implementation

AODV is used to construct the best path for the braid
algorithm (but any other single path routing algorithm could
be used). The 1-hop braid around this best path is then
constructed as follows. When a node receives data to forward
along the AODV path, it sends a braid request for the associ-
ated destination (if one has not yet been sent). When a node
receives a braid request for a destination, it groups the request
with other requests for that destination. If it finds it can hear
at least two nodes on the path, it sends a braid reply to all
nodes it can hear (except the node closest to the destination).

To tear the braid down, a braid node sends error messages
to nodes it can hear on the AODV path when either one of its
links to the AODV path breaks (i.e., drops a packet) and T has
elapsed, or when it receives a more recent braid request for the
destination (indicating that the current AODV path has been



replaced). A node deletes its next hop braid for a destination
when either (i) its next hop or later link on its AODV best
path has dropped a packet for that destination, or (ii) a node
for that destination is updated in its AODV routing table. A
node marks a link as “bad” whenever the node attempts to
use a link and has a packet dropped. The AODV path and/or
braid will be recomputed only when T has elapsed. Whenever
routes are recomputed, links are marked as “good.”

Nodes perform local forwarding within the braid as follows.
Nodes on the AODV path select their AODV next hop with
probability 1 if it is “good” or if there is no next hop braid
node, and with probability 0.1 if it is “bad.” If the AODV next
hop was not selected, then the node iterates through its braid
links. A braid link is selected with probability 1 if it is good
or probability 0.1 if it is bad. If the node iterates through all
of its braid links without selecting a next hop, then by default
the AODV next hop is returned. If the node is a braid node,
then it iterates through the nodes it can hear on the AODV
path, selecting the AODV path node that is currently both
closest to the destination and good. To ensure that bad links
are also attempted, any AODV path node can be selected with
probability 0.1. If the node iterates through all of its AODV
path nodes without selecting a next hop, then by default the
first AODV path node in its list is returned.

B. Simulation Setup

Our GloMoSim environment consists of 60 nodes in a
1.5km x 1.5km area, moving according to a random waypoint
mobility model with the nodes initially placed randomly. For
the mobility model, the pause time was zero seconds and
nodes moved at a speed uniformly chosen between 4km/hr
and 10km/hr. We used a constant bit rate flow between two
nodes for which data was generated every 0.5sec and a total of
5 million packets were generated. The simulation was run for
60 simulated days. To address the problem of a long transient
phase, the length of the flow was selected by examining
the packet drop rate for progressively longer flows; when
the change in % of packets dropped was sufficiently small
(< 0.05%), we assumed that steady-state had been reached. A
better method would be to implement the “perfect simulation”
method of Le Boudec and Vojnovic [1]; we leave this for
future work. The MAC protocol used was 802.11 and the
transmission radius was about 250 meters (from setting the
radio transmit power to 7.9dBM).

C. Results

Figure 9 compares AODV and braid routing with respect to
throughput, overhead, and links used. Figure 9(a) shows that
the braid achieves a maximum of about 5% higher throughput
than AODV for T = 50 and T = 100. Figure 9(b) shows
that the braid uses about the same amount of AODV overhead
when building its best path as AODV (as measured by the
number of path requests and replies transmitted by AODV).
While the braid also incurs overhead from braid requests
and replies, this overhead is less than 1/4 of that used to
construct the AODV path. Figure 9(b) also shows that the

total number of error packets transmitted for braid routing
(aggregating error packets for both AODV and the braid) is
perhaps five times greater than AODV error packets, in part
because the braid involves more nodes in routing. Figure 9(c)
shows that the braid algorithm attempts to use more links than
AODV (where “attempt” indicates that the routing algorithm
attempted to transmit a packet over a link, but may not have
been successful), in part because it may use a longer path. The
braid, however, also has fewer links broken than does AODV.

In summary, Figure 9 indicates that the 1-hop braid is
able to increase throughput up to about 5% while using
significantly less overhead than, for instance, would be needed
to construct a second disjoint AODV path. The gains in
throughput, however, are not as significant as the gains in
reliability shown in the Matlab experiments in Section IVD.
We conjecture that this discrepancy is a consequence of the
different network models, particularly in how they differ with
respect to the rate at which links appear/disappear, and the
temporal and spatial correlations among links changes.

Consider first the rate at which links appear/disappear.
Results from [8] indicate that the inter-meeting times for
two nodes using the random waypoint model are “well-
approximated by an exponential distribution, at least for small
to moderate transmission radii (with respect to the size of
the area).” Using Lemma 1 in [8], we compute that for the
transmission radius and random waypoint model considered
here, the expected inter-meeting time for two nodes is given by
1/λ with λ = 2.65/hr. Hence, on average, two nodes will meet
once every 22.7 minutes. This indicates that in our GloMoSim
experiments, that when a link breaks (due to mobility) that it
likely stays down for an interval significantly longer than the
update interval T . Conversely, the probability of transitioning
from down to up during T was 0.5 in the models used in the
Matlab experiments in Section IVD. Long inter-meeting times
limit the throughput gains achieved by the braid since when
braid links fail it is unlikely that they will re-appear before
the remaining time in the update interval T has elapsed.

Next consider correlations among links. In the Matlab ex-
periments we assumed links failed independently. Conversely,
we would expect that outgoing links of a given node would
tend to have correlated failures when links break due to
mobility. We would also expect that since all link failures are
varying functions of how much time t of the interval T has
elapsed, that link failures among different nodes would also
be dependent due to the shared dependence on t. Correlated
link failures limit the throughput gains achieved by the braid
since if a link on the AODV path fails, it is also more likely
that one of the links routing around the failed link will also
fail soon (if it has not already).

VII. CONCLUSIONS

This paper described a braided routing algorithm to improve
the robustness of dynamic MANETs. We proposed a general
method for braid construction and presented analytic optimal-
ity results in a restricted class of networks. We developed scal-
ing laws for robustness as a function of path length and braid
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Fig. 9. Comparison of 1-hop braid with AODV using GloMoSim.

width. We validated the theoretical results through simulation,
finding additional effects due to link failure correlations.

For future work we are interested in triggering route updates
as a result of changes in end-to-end network performance,
rather than using a fixed update interval. Similarly, rather than
using a fixed braid width, we are interested in techniques to
locally widen the braid to meet a robustness target. Addressing
the issue of correlated links, we would like to explicitly con-
sider correlations as well as more realistic radio link models.
Finally, we would like to explore rate control mechanisms such
as backpressure routing [23] for local forwarding to achieve a
solution which is robust in throughput as well as connectivity.
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