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ABSTRACT
Significant investments have been made into deploying pha-
sor measurement units (PMUs) on electric power grids world-
wide. PMUs allow the state of the power system – the
voltage phasor of system buses and current phasors of all
incident transmission lines – to be directly measured. In
some cases, it is also possible to infer the voltage and cur-
rent phasors at neighboring buses and lines. Because PMUs
are expensive, it is typically not possible to deploy enough
PMUs to observe all phasors in a grid network [3, 6].

In this paper, we prove the NP-Completeness of four prob-
lems relating to PMU placements at a subset of system buses
to achieve different goals: FullObserve, MaxObserve,
FullObserve-XV, and MaxObserve-XV. FullObserve
considers the minimum number of PMUs needed to observe
all nodes, while MaxObserve considers the maximum num-
ber of buses that can be observed with a given number of
PMUs. While the first of these two has been considered in
the past, our formulation here generalizes the systems being
considered. Next, FullObserve-XV and MaxObserve-
XV consider these two problems under the constraints that
PMUs must be placed“close” to each other so their measure-
ments can be cross-validated. FullObserve-XV considers
observing the entire network, while MaxObserve-XV con-
siders maximizing the number of observed buses under this
new constraint.

Motivated by their high complexity, for each problem we
investigate the performance of a suitable greedy approxima-
tion algorithm for PMU placement. Through simulations,
we compare the performance of these algorithms with the
optimal placement of PMUs over several IEEE bus systems
as well as over synthetic graphs. In our simulations these
algorithms yield results that are close to optimal - for all
four placement problems, the greedy algorithms yield, on
average, a PMU placement that is within 97% of optimal.
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1. INTRODUCTION
Significant investments have been made to deploy phasor

measurement units (PMUs) on electric power grids world-
wide. PMUs provide synchronized voltage and current mea-
surements at a sampling rate orders of magnitude higher
than the status quo: 10 to 60 samples per second rather
than one sample every 1 to 4 seconds. This allows system
operators to directly measure the state of the electric power
grid in real-time, rather than rely on imprecise state esti-
mation. Consequently, PMUs have the potential to enable
an entirely new set of applications for the power grid: pro-
tection and control during abnormal conditions, real-time
distributed control, postmortem analysis of system faults,
advanced state estimators for system monitoring, and the
reliable integration of renewable energy resources [1].

An electric power system consists of a set of buses – an
electric substation, power generation center, or aggregation
of electrical loads – and transmission lines connecting those
buses. The state of a power system is defined by the voltage
phasor – the magnitude and phase angle of electrical sine
waves – of all system buses and the current phasor of all
transmission lines. PMUs placed on buses provide real-time
measurements of these system variables. However, because
PMUs are expensive, they cannot be deployed on all system
buses [3][6]. Fortunately, the voltage phasor at a system
bus can, at times, be determined (termed observed in this
paper) even when a PMU is not placed at that bus, by apply-
ing Ohm’s and Kirchhoff’s laws on the measurements taken
by a PMU placed at some nearby system bus [3][4]. Specif-
ically, with correct placement of enough PMUs at a subset
of system buses, the entire system state can be determined.

In this work, we study two sets of PMU placement prob-
lems. The first problem set consists of FullObserve and
MaxObserve, and considers maximizing the observability
of the network via PMU placement. FullObserve consid-
ers the minimum number of PMUs needed to observe all
system buses, while MaxObserve considers the maximum
number of buses that can be observed with a given number
of PMUs. A bus is said to be observed if there is a PMU
placed at it or if its voltage phasor can be estimated using
Ohm’s or Kirchhoff’s Law. Although FullObserve is well



studied [3, 4, 10, 12, 15], existing work considers only net-
works consisting solely of zero-injection buses, an unrealistic
assumption in practice, while we generalize the problem for-
mulation to include mixtures of zero and non-zero-injection
buses. Additionally, our approach for analyzing FullOb-
serve provides the foundation with which to present the
other three new (but related) PMU placement problems.

The second set of placement problems considers PMU
placements that support PMU error detection. PMU mea-
surement errors have been recorded in actual systems [14].
One method of detecting these errors is to deploy PMUs
“near” each other, thus enabling them to cross-validate each-
other’s measurements. FullObserve-XV aims to minimize
the number of PMUs needed to observe all buses while insur-
ing PMU cross-validation, and MaxObserve-XV computes
the maximum number of observed buses for a given number
of PMUs, while insuring PMU cross-validation.

We make the following contributions in this paper:

• We formulate two PMU placement problems, which
(broadly) aim at maximizing observed buses while min-
imizing the number of PMUs used. Our formulation
extends previously studied systems by considering both
zero and non-zero-injection buses.

• We formally define graph-theoretic rules for PMU cross-
validation. Using these rules, we formulate two addi-
tional PMU placement problems that seek to maxi-
mize the observed buses while minimizing the number
of PMUs used under the condition that the PMUs are
cross-validated.

• We prove that all four PMU placement problems are
NP-Complete. This represents our most important
contribution.

• Given the proven complexity of these problems, we
evaluate heuristic approaches for solving these prob-
lems. For each problem we describe a greedy algo-
rithm, and prove that each greedy algorithm has poly-
nomial running time.

• Using simulations, we evaluate the performance of our
greedy approximation algorithms over synthetic and
actual IEEE bus systems. We find that the greedy
algorithms yield a PMU placement that is, on aver-
age, within 97% optimal. Additionally, we find that
the cross-validation constraints have limited effects on
observability: on average our greedy algorithm that
places PMUs according to the cross-validation rules
observes only 5.7% fewer nodes than the same algo-
rithm that does not consider cross-validation.

The rest of this paper is organized as follows. In Section 2
we introduce our modeling assumptions, notation, and ob-
servability and cross-validation rules. In Section 3 we formu-
late and prove the complexity of our four PMU placement
problems. Section 4 presents the approximation algorithms
for each problem and Section 5 considers our simulation-
based evaluation. We conclude with a review of related work
(Section 6) and concluding remarks (Section 7).

2. PRELIMINARIES
In this section we introduce notation and underlying as-

sumptions (Section 2.1), and define our observability (Sec-
tion 2.2) and cross-validation (Section 2.3) rules.
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Figure 1: Example power system graph. PMU
nodes (a, b) are indicated with darker shading. In-
jection nodes have solid borders while zero-injection
nodes (g) have dashed borders.

2.1 Assumptions, Notation, and Terminology
Consistent with the conventions in [3, 4, 5, 12, 15, 16], we

make the following assumptions about PMU placements and
buses. First, a PMU can only be placed on a bus. Second, a
PMU on a bus measures the voltage phasor at the bus and
the current phasor of all transmission lines connected to it.

We model a power grid as an undirected graphG = (V,E).
Each v ∈ V represents a bus. A bus is either an electrical
substation, a power generation center, or an aggregation of
loads. V = VZ ∪ VI , where VZ is the set of all zero-injection
buses and VI is the set of all non-zero-injection buses. A bus
is zero-injection if it has no load nor generator [17]. All other
buses are non-zero-injection. For simplicity, we refer to non-
zero-injection buses as injection buses in the remainder of
the paper. Each (u, v) ∈ E is a transmission line connecting
buses u and v. Figure 1 is an example of a power system
modeled as such an undirected graph.

Using the same notation as Brueni and Heath [4], we de-
fine two Γ functions. For v ∈ V let Γ(v) be the set of
v’s neighbors in G, and Γ[v] = Γ(v) ∪ {v}. A PMU place-
ment ΦG ⊆ V is a set of nodes at which PMUs are placed,
and ΦRG ⊆ V is the set of observed nodes for graph G
with placement ΦG (see definition of observability below).
k∗ = min{|ΦG| : ΦRG = V } denotes the minimum number
of PMUs needed to observe the entire network. Where the
graph G is clear from the context, we drop the G subscript.

For convenience, we refer to any node with a PMU as a
PMU node. Additionally, for a given PMU placement we say
that set W ⊆ V is observed if all nodes in W are observed,
and if W = V we refer to the graph as fully observed.

2.2 Observability Rules
We use the simplified observability rules elegantly formu-

lated by Brueni and Heath [4]. We restate the rules here:

1. Observability Rule 1 (O1). If node v is a PMU
node, then Γ[v] is observed. Formally, if v ∈ ΦG, then
Γ[v] ⊆ ΦRG.

2. Observability Rule 2 (O2). If a zero-injection node,
v, is observed and Γ(v)\{u} is observed for some u ∈
Γ(v), then Γ[v] is observed. Formally, if v ∈ ΦRG ∩ VZ
and |Γ(v) ∩ (V − ΦRG)| ≤ 1, then Γ[v] ⊆ ΦRG.

Consider the example in Figure 1, where the shaded nodes
are PMU nodes and g is the only zero-injection node. Nodes
a − d are observed by applying O1 at the PMU at a, and
nodes a, b, f and g are observed by applying O1 at b. e
cannot be observed via c because c does not have a PMU (O1
does not apply) and is an injection node (O2 does not apply).
Similarly, j is not observed via f . Finally, although g ∈ VZ ,



O2 cannot be applied at g because g has two unobserved
neighbors i, h, so they remain unobserved.

Since O2 only applies with zero-injection nodes, more
nodes are likely observed when nodes are zero-injection. For
example, consider the case where c and f are zero-injection
nodes. a − d, g and f are still observed as before, as O1
makes no conditions on the node type. Additionally, since
c, f ∈ VZ and each has a single unobserved neighbor, we can
apply O2 at each of them to observe e, j, respectively. We
evaluate the effect of increasing the number of zero-injection
nodes on observability in our simulations (Section 5.2).

2.3 Cross-Validation Rules
From Vanfretti et al. [14], PMU measurements can be

cross-validated when: (1) a voltage phasor of a non-PMU
bus can be computed by PMU data from two different buses
or (2) the current phasor of a transmission line can be com-
puted from PMU data from two different buses. 1 Although
it is the PMU data that is actually being cross-validated,
for convenience, we say a PMU is cross-validated. A PMU
is cross-validated if one of the rules below is satisfied [14]:

1. Cross-Validation Rule 1 (XV1). If two PMU nodes
are adjacent, then the PMUs cross-validate each other.
Formally, if u, v ∈ ΦG, u ∈ Γ(v), then the PMUs at u
and v are cross-validated.

2. Cross-Validation Rule 2 (XV2). If two PMU nodes
have a common neighbor, then the PMUs cross-validate
each other. Formally, if u, v ∈ ΦG, u 6= v and Γ(u) ∩
Γ(v) 6= ∅, then the PMUs at u and v are cross-validated.

In short, the cross-validation rules require that the PMU is
within two hops of another PMU. For example, in Figure 1,
the PMUs at a and b cross-validate each other by XV1.

XV1 derives from the fact that both PMUs are measur-
ing the current phasor of the transmission line connecting
the two PMU nodes. XV2 is more subtle. Using the nota-
tion specified in XV2, when computing the voltage phasor
of an element in Γ(u) ∩ Γ(v) the voltage equations include
variables to account for measurement error (e.g., angle bias)
[13]. When the PMUs are two hops from each other, there
are more equations than unknowns, allowing for measure-
ment error detection. Otherwise, the number of unknown
variables exceeds the number of equations, which eliminates
the possibility of detecting measurement errors [13].

3. FOUR NP-COMPLETE PROBLEMS
In this section we define four PMU placement problems

and prove the NP-Completeness of each. We begin with
a general overview of NP-Completeness, as well as a high-
level description of our proof strategy in this paper (Section
3.1). In the remainder of Section 3 we present and prove
the NP-Completeness of four PMU placement problems, in
the following order: FullObserve (Section 3.2), MaxOb-
serve (Section 3.3), FullObserve-XV (Section 3.4), and
MaxObserve-XV (Section 3.5).

In all four problems defined in this paper, we are only
concerned with computing the voltage phasors of each bus
(i.e., observing the buses). Using the values of the voltage
phasors, Ohm’s Law can be easily applied to compute the

1Vanfretti et al. [14] use the term “redundancy” instead of cross-
validation.

current phasors of each transmission line. Also, we con-
sider networks with both injection and zero-injection buses.
For similar proofs for purely zero-injection systems, see our
Technical Report [8].

3.1 Proof Strategy
Before proving that our PMU placement problems are NP-

Complete (abbreviated NPC), we provide some background
on NP-Completeness. NPC problems are the hardest prob-
lems in complexity class NP. It is generally assumed that
solving NPC problems is hard, meaning that any algorithm
that solves an NPC problem has exponential running time
as function of the input size. It is important to clarify that
despite being NPC, a specific problem instance might be ef-
ficiently solvable. This is either due to the special structure
of the specific instance or because the input size is small,
yielding a small exponent. For example, in Section 5 we
are able to solve FullObserve for small IEEE bus topolo-
gies due to their small size. Thus, by establishing that our
PMU placement problems are NPC, we claim that there ex-
ist bus topologies for which these problems are difficult to
solve (i.e., no known polynomial-time algorithm exists to
solve those cases).

To prove our problems are NPC, we follow the standard
three-step reduction procedure. For a decision problem Π,
we first show Π ∈ NP. Second, we select a known NPC
problem, denoted Π′, and construct a polynomial-time trans-
formation, f , that maps any instance of Π′ to an instance
of Π. Finally, we ensure that x ∈ Π′ ⇔ f(x) ∈ Π [7].

Next, we outline the proof strategy we use throughout the
paper. In Sections 3.2 through Section 3.5 we modify the
approach presented by Brueni and Heath in [4] to prove the
problems we consider here are NPC. In general, we found
their scheme to be elegantly extensible for proving many
properties of PMU placements.

In [4], the authors prove NP-Completeness by reduction
from planar 3-SAT (P3SAT). A 3-SAT formula, φ, is a
boolean formula in conjunctive normal form (CNF) such
that each clause contains at most 3 literals. For any 3-
SAT formula φ with the sets of variables {v1, v2, . . . , vr} and
clauses {c1, c2, . . . , cs}, G(φ) is the bipartite graph G(φ) =
(V (φ), E(φ)) defined as follows:

V (φ) = {vi | 1 ≤ i ≤ r} ∪ {cj | 1 ≤ j ≤ s}
E(φ) = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

Note that edges pass only between vi and cj nodes, and so
the graph is bipartite. P3SAT is a 3-SAT formula such that
G(φ) is planar [11]. For example, P3SAT formula

ϕ = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) ∧ (v2 ∨ v3 ∨ v5)

∧(v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5) (1)

has graph G(ϕ) shown in Figure 2. Discovering a satisfying
assignment for P3SAT is an NPC problem, and so it can be
used in a reduction to prove the complexity of the problems
we address here. Note that in this work we will use ϕ to
denote a specific P3SAT formula, while φ will be used to
denote a generic P3SAT formula.

Following the approach in [4], for P3SAT formula, φ, we
replace each variable node and each clause node inG(φ) with
a specially constructed set of nodes, termed a gadget. In this
work, all variable gadgets will have the same structure, and
all clause gadgets have the same structure (that is different
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Figure 2: G(ϕ) = (V (ϕ), E(ϕ)) formed from ϕ in Equa-
tion (1).

from the variable gadget structure), and we denote the re-
sulting graph as H(φ). In H(φ), each variable gadget has a
subset of nodes that semantically represent assigning “True”
to that variable, and a subset of nodes that represent assign-
ing it “False”. When a PMU is placed at one of these nodes,
this is interpreted as assigning a truth value to the P3SAT
variable corresponding with that gadget. Thus, we use the
PMU placement to determine a consistent truth value for
each P3SAT variable. Also, clause gadgets are connected to
variable gadgets at either “True” or “False” (but never both)
nodes, in such a way that the clause is satisfied if and only
if at least one of those nodes has a PMU.

While we assume G(φ) is planar, we make no such claim
regarding H(φ), though in practice all graphs used in our
proofs are indeed planar. The proof of NPC rests on the
fact that solving the underlying φ formula is NPC.

In what follows, for a given PMU placement problem Π,
we prove Π is NPC by showing that a PMU placement in
H(φ), Φ, can be interpreted semantically as describing a
satisfying assignment for φ iff Φ ∈ Π. Since P3SAT is NPC,
this proves Π is NPC as well.

While the structure of our proofs is adapted from [4], the
variable and clause gadgets we use to correspond to the
P3SAT formula are novel, thus leading to a different set
of proofs. Our work here demonstrates how the work in [4]
can be extended, using new variable and clause gadgets, to
address a wide array of PMU placement problems.

3.2 The FullObserve Problem
The FullObserve problem has been previously discussed

in the literature (e.g., the PMUP problem in [4], and the
PDS problem in [10]) for purely zero-injection bus systems.
Here we consider networks with mixtures of injection and
zero-injection buses, and modify the NPC proof for PMUP
in [4] to handle this mixture.

FullObserve Decision Problem:

• Instance: Graph G = (V,E) where V = VZ ∪VI , VZ 6=
∅, k PMUs such that k ≥ 1. 2

• Question: Is there a ΦG such that |ΦG| ≤ k and ΦRG =

2We include the condition that VZ 6= ∅ because otherwise
FullObserve reduces to Vertex-Cover, making the NP-
Completeness proof trivial.
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(a) Variable gadget Vi used in Theorem
3.1 and Theorem 3.4.

ajbj

(b) Clause
gadget Cj
used in Theo-
rem 3.4.

Figure 3: Gadgets used in Theorem 3.1 and Theo-
rem 3.4. Zi in Figure (a) is the only zero-injection
node. The dashed edges in Figure (a) are connec-
tions to clause gadgets. Likewise, the dashed edges
in Figure (b) are connections to variable gadgets.

V ?

The corresponding optimization problem is to find the
minimal value k such that the entire network is observed.
It is well-known that these two formulations are equivalent
complexity-wise, and thus we present and prove only the
complexity of the decision problem here. We formally de-
fine the optimization problem in our Technical Report [9].

Theorem 3.1. FullObserve is NP-Complete.

Proof Idea: We introduce a problem-specific variable
gadget. We show that in order to observe all nodes, PMUs
must be placed on variable gadgets, specifically on nodes
that semantically correspond to True and False values that
satisfy the corresponding P3SAT formula.

For our first problem, we use a single node as a clause
gadget denoted aj , and the subgraph shown in Figure 3(a)
as the variable gadget. Note that in the variable gadget,
all the nodes are injection nodes except for Zi. For this
subgraph, we state the following simple lemma:

Lemma 3.2. Consider the gadget shown in Figure 3(a),
possibly with additional edges connected to Ti and/or Fi.
Then (a) nodes Ii, Zi are not observed if there is no PMU on
the gadget, and (b) all the nodes in the gadget are observed
with a single PMU iff the PMU is placed on either Ti or Fi.

Proof. (a) If there is no PMU on the gadget, O1 cannot
be applied at any of the nodes, and so we must resort to
O2. We assume no edges connected to Ii, Zi from outside
the gadget, and since Ti, Fi ∈ VI , we cannot apply O2 at
them, which concludes our proof.

(b) In one direction, if we have a PMU placed at Ti, from
O1 we can observe Zi, Ii. Since Zi is zero-injection and
one neighbor, Ti has been observed, from O2 at Zi we can
observe Fi. The same holds for placing a PMU at Fi, due
to symmetry.

In the other direction, by placing a PMU at Ii (Zi) we
observe Ti and Fi via O1. However, since Fi, Ti /∈ VZ , O2
cannot be applied at either of them, so Zi (Ii) will not be
observed.

Proof of Theorem 3.1. We start by arguing that Ful-
lObserve ∈ NP. First, nondeterministically select k nodes
in which to place PMUs. Using the rules specified in Section
2.2, determining the number of observed nodes can be done
in linear time.

To show FullObserve is NP-hard, we reduce from P3SAT.
Let φ be an arbitrary P3SAT formula with variables



{v1, v2, . . . , vr} and the set of clauses {c1, c2, . . . , cs}, and
G(φ) the corresponding planar graph. We use G(φ) to con-
struct a new graphH0(φ) = (V0(φ), E0(φ)) by replacing each
variable node in G(φ) with the variable gadget shown in Fig-
ure 3(a). The clause nodes consist of a single node (i.e., are
the same as in G(φ)). We denote the node corresponding to
cj as aj . All clause nodes are injection nodes. In the remain-
der of this proof we let H := H0(φ). In total, VZ contains all
Zi nodes for 1 ≤ i ≤ r, and all other nodes are in VI . The
edges connecting clause nodes with variable gadgets express
which variables are in each clause: for each clause node aj ,
(Ti, aj) ∈ E0(φ) ⇔ vi ∈ cj , and (Fi, aj) ∈ E0(φ) ⇔ vi ∈ cj .
As a result, the following observation holds:

Observation 3.3. For a given truth assignment and a cor-
responding PMU placement, a clause cj is satisfied iff aj is
attached to a node in a variable gadget with a PMU.

The resulting graph for the example given in Figure 2 is
shown in Figure 4. Nodes with a dashed border are zero-
injection nodes. 3 The corresponding formula for this graph,
ϕ, is satisfied by truth assignment Aϕ: v1, v2, v3, v4, and v5
are True. This corresponds to the dark shaded nodes in
Figure 4. While this construction generates a graph with
very specific structure, in our Technical Report [9], we detail
how to extend our proof to consider graphs with a wider
range of structures.

With this construct in place, we move on to our proof.
We show that φ is satisfiable if and only if k = r = |ΦH |
PMUs can be placed on H such that ΦRH = V .

(⇒) Assume φ is satisfiable by truth assignmentAφ. Then,
consider the placement ΦH such that for each variable gad-
get Vi, Ti ∈ ΦH ⇔ vi = True in Aφ, and Fi ∈ ΦH ⇔
vi = False. From Lemma 3.2(b) we know that all nodes in
variable gadgets are observed by such a placement. From
Observation 3.3, all clause nodes are observed because our
PMU assignment is based on a satisfying assignment. Thus,
we have shown that ΦRH = V .

(⇐) Suppose there is a placement of r PMUs, ΦH , such
that ΦRH = V . From Lemma 3.2(a) we know that for each
Vi with no PMU, at least two nodes are not observed, so
each Vi must have a PMU placed in it. Since we have only
r PMUs, that means one PMU per gadget. From Lemma
3.2(b) we know this PMU must be placed on Ti or Fi, since
otherwise the gadget will not be fully observed. Note that
these nodes are all in VI .

Since we assume the graph is fully observed, all aj are
observed by ΦH . Because we just concluded that PMUs are
placed only on injection nodes in the variable gadgets, each
clause node aj can only be observed via application of O1
at Ti/Fi nodes to which it is attached – specifically, aj is
attached to a node with a PMU. From Observation 3.3, all
clauses are satisfied by the semantic interpretation of our
PMU placement, which concludes our proof.

3.3 The MaxObserve Problem
MaxObserve is a variation of FullObserve: rather than

consider the minimum number of PMUs required for full sys-
tem observability, MaxObserve finds the maximum num-
ber of nodes that can be observed using a fixed number of
PMUs. To differentiate this problem from FullObserve,

3Throughout this paper, nodes with dashed borders denote zero-
injection nodes.
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Figure 4: Graph G = (V,E) = H1(ϕ) formed from ϕ
formula in Theorem 3.1 proof. Nodes with a dashed
border are zero-injection nodes.

we assume in the following formulation that we have only
k < k∗ PMUs at our disposal, i.e., there are not enough
PMUs to observe the entire network.

MaxObserve Decision Problem:

• Instance: Graph G = (V,E) where V = VZ ∪ VI , k
PMUs such that 1 ≤ k < k∗.

• Question: For a given m < |V |, is there a ΦG such

that |ΦG| ≤ k and m ≤ |ΦRG| < |V |?

The corresponding optimization problem is to find the
maximal value m for the given network and k PMUs. A
formal definition of the optimization problem can be found
in our Technical Report [9].

Theorem 3.4. MaxObserve is NP-Complete.

Proof Idea: First, we construct problem-specific gadgets
for variables and clauses. We then demonstrate that any
solution that observes m nodes must place the PMUs only
on nodes in the variable gadgets. Next we show that as
a result of this, the problem of observing m nodes in this
graph reduces to Theorem 3.1.

Proof. MaxObserve ∈ NP using the same argument
in the proof for Theorem 3.1.

Next, we reduce from P3SAT as in the proof for Theo-
rem 3.1, where φ is an arbitrary P3SAT formula. We create
a new graph H1(φ) = (V1(φ), E1(φ)) which is identical to
H0(φ) from the previous proof, except that each clause node
in H0(φ) is replaced with the clause gadget shown in Fig-
ure 3(b), comprising of two injection nodes. As before, the
edges connecting clause nodes with variable gadgets express
which variables are in each clause: for each clause node aj ,
(Ti, aj) ∈ E1(φ) ⇔ vi ∈ cj , and (Fi, aj) ∈ E1(φ) ⇔ vi ∈ cj .
Note that Observation 3.3 holds here as well.

We are now ready to show MaxObserve is NP-hard. For
convenience, let H := H1(φ). Recall φ has r variables and
s clauses. Here we consider the instance of MaxObserve
where k = r and m = 4r + s, and show that φ is satisfiable
if and only if r = |ΦH | PMUs can be placed on H such that
m ≤ |ΦRH | < |V |. In our Technical Report [9], we extend this

proof to allow arbitrary m values and different |VZ ||VI |
ratios.



(⇒) Assume φ is satisfiable by truth assignmentAφ. Then,
consider the placement ΦH such that for each variable gad-
get Vi, Ti ∈ ΦH ⇔ vi = True in Aφ, and Fi ∈ ΦH ⇔ vi =
False. In the proof for Theorem 3.1 we demonstrated such
a placement will observe all nodes in H0(φ) ⊂ H1(φ), and
using the same argument it can easily be checked that these
nodes are still observed in H1(φ). Each bj node remains un-
observed because each aj ∈ VI and consequently O2 cannot
be applied at aj . Since |H0(φ)| = 4r + s = m, we have
observed the required nodes.

(⇐) We begin by proving that any solution that observes
m nodes must place the PMUs only on nodes in the variable
gadgets. By construction, each PMU is either on a clause
gadget or a variable gadget, but not both. Let 0 ≤ t ≤ r
be the number of PMUs on clause gadgets, we wish to show
that for the given placement t = 0. First, note that at least
max(s− t, 0) clause gadgets are without PMUs, and that for
each such clause (by construction) at least one node (bi) is
not observed. Next, from Lemma 3.2(a) we know that for
each variable gadget without a PMU, at least two nodes are
not observed.

Denote the unobserved nodes for a given PMU placement
as Φ−H . Thus, we get |Φ−H | ≥ 2t+ max((s− t), 0). However,
sincem nodes are observed and |V |−m ≤ s, we get |Φ−H | ≤ s,
so we know s ≥ 2t+ max((s− t), 0). We consider two cases:

• s ≥ t: then we get s ≥ t+ s⇒ t = 0.

• s < t: then we get s ≥ 2t, and since we assume here
0 ≤ s < t this leads to a contradiction and so this case
cannot occur.

Thus, the r PMUs must be on nodes in variable gadgets.
Note that the variable gadgets in H1(φ) have the same struc-
ture as in H0(φ). We return to this point shortly.

Earlier we noted that for each clause gadget without a
PMU, the corresponding bj node is unobserved, which comes
to s nodes. To observe m = 4r + s nodes, we will need to
observe all the remaining nodes. Thus, we have reduced the
problem to that of observing all of H0(φ) ⊂ H1(φ). Our
proof for Theorem 3.1 demonstrated this can only be done
by placing PMUs at nodes corresponding to a satisfying as-
signment of φ, and so our proof is complete.

3.4 The FullObserve-XV Problem
FullObserve-XV Decision Problem:

• Instance: Graph G = (V,E) where V = VZ ∪ VI , k
PMUs such that k ≥ 1.

• Question: Is there a ΦG such that |ΦG| ≤ k and

ΦRG = V under the condition that each v ∈ ΦG is
cross-validated?

The corresponding optimization problem is to find the
minimal k such that the entire network is observed and all
PMUs are cross-validated. The optimization problem is for-
mally defined in our Technical Report [9].

Theorem 3.5. FullObserve-XV is NP-Complete.

Proof Idea: We show FullObserve-XV is NP-hard by
reducing from P3SAT. We create a single-node gadget for
clauses (as for FullObserve) and the gadget shown in Fig-
ure 5 for each variable. Each variable gadget here comprises
of two disconnected components, and there are two Ti and

FiTi
Ii

Zi

FiTi
Ii

Zi

t

t

t

t

b b

b

b

Figure 5: Variable gadget used in Theorem 3.5, con-
taining two disconnected subgraphs. Superscript,
t, denotes nodes in the upper subgraph and super-
script, b, indexes nodes in the lower subgraph. The
dashed edges are connections to clause gadgets.

two Fi nodes, one in each component. First, we show that
each variable gadget must have 2 PMUs for the entire graph
to be observed, one PMU for each subgraph. Then, we show
that cross-validation constraints force PMUs to be placed on
both T nodes or both F nodes. Finally, we use the PMU
placement to derive a satisfying P3SAT truth assignment.

Lemma 3.6. Consider the gadget shown in Figure 5, pos-
sibly with additional nodes attached to Ti and/or Fi nodes.
(a) nodes Iti , Z

t
i are not observed if there is no PMU on V ti ,

and (b) all the nodes in V ti are observed with a single PMU
iff the PMU is placed on either T ti or F ti . Due to symmetry,
the same holds when considering V bi .

Proof. The proof is straightforward from the proof of
Lemma 3.2, since both V ti and V bi are identical to the gadget
from Figure 3(a), which Lemma 3.2 refers to.

Proof of Theorem 3.5. First, we argue that
FullObserve-XV ∈ NP. Given a FullObserve-XV solu-
tion, we use the polynomial time algorithm described in our
proof for Theorem 3.1 to determine if all nodes are observed.
Then, for each PMU node we run a breadth-first search,
stopping at depth 2, to check that the cross-validation rules
are satisfied.

To show FullObserve-XV is NP-hard, we reduce from
P3SAT. Our reduction is similar to the one used in Theorem
3.1. We start with the same P3SAT formula φ with variables
{v1, v2, . . . , vr} and the set of clauses {c1, c2, . . . , cs}.

For this problem, we construct H2(φ) in the following
manner. We use the single-node clause gadgets as in H0(φ),
and as before, the edges connecting clause nodes with vari-
able gadgets shown in Figure 5 express which variables are
in each clause: for each clause node aj , (T ti , aj), (T

b
i , aj) ∈

E1(φ) ⇔ vi ∈ cj , and (F ti , aj), (F
b
i , aj) ∈ E1(φ) ⇔ vi ∈ cj .

For notational simplicity, we refer to H2(φ) as H. Note that
once again, by construction Observation 3.3 holds for H.

Moving on, we now show that φ is satisfiable if and only
if k = 2r PMUs can be placed on H such that H is fully ob-
served under the condition that all PMUs are cross-validated,
and that 2r PMUs are the minimal bound for observing the
graph with cross-validation.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For
each 1 ≤ i ≤ r, if vi = True in Aφ we place a PMU at T bi
and at T ti of the variable gadget Vi. Otherwise, we place a
PMU at F bi and at F ti of this gadget. From the fact that Aφ
is satisfying and Observation 3.3, we know the PMU nodes



in Vi must be adjacent to some clause node4, making T ti
(F ti ) two hops away from T bi (F bi ). Therefore, all PMUs are
cross-validated by XV2.

Assignment ΦH observes all v ∈ V : from Lemma 3.6(b)
we know the assignment fully observes all the variable gad-
gets. From Observation 3.3 we know all clause nodes are
adjacent to a node with a PMU, so they are observed via
O1, which concludes this direction of the theorem.

(⇐) Suppose ΦG observes all nodes in H under the condi-
tion that each PMU is cross-validated, and that |ΦH | = 2r.
We want to show that φ is satisfiable by the truth assign-
ment derived from ΦH . We do so following a similar method
as for the previous Theorems.

From Lemma 3.6(a) we know that each component in each
variable gadget must have at least one PMU in order for the
entire graph to be observed. Since we have 2r PMUs and 2r
components, each component will have a single PMU. This
also means there are no PMUs on clause gadgets.

From Lemma 3.6(b) we know that full observability will
require PMUs be on either T or F nodes in each variable
gadget. As a result, cross-validation constraints require for
each variable gadget that both PMUs are either on T ti , T

b
i

or F ti , F
b
i . This is because any T ti (F ti ) is four hops or more

away from any other T/F node. Since we assume the clause
nodes are all observed and we know no PMUs are on clause
nodes, from Observation 3.3 this means the PMU placement
satisfies all clauses, which concludes our proof.

3.5 The MaxObserve-XV Problem
MaxObserve-XV Decision Problem:

• Instance: Graph G = (V,E) where V = VZ ∪ VI , k
PMUs such that 1 ≤ k < k∗, and some m < |V |.

• Question: Is there a ΦG such that |ΦG| ≤ k and m ≤
|ΦRG| < |V | under the condition that each v ∈ ΦG is
cross-validated?

We require that k < k∗, in order to distinguish between
FullObserve-XV and MaxObserve-XV. The correspond-
ing optimization problem is to find the maximal m such that
m nodes can be observed using k PMUs and while cross-
validating all PMUs. A formal definition of the optimization
problem can be found in our Technical Report [9].

Theorem 3.7. MaxObserve-XV is NP-Complete.

Proof. Our proof is a combination of the proofs for
MaxObserve and FullObserve-XV. The details can be
found in our Technical Report [9].

4. APPROXIMATION ALGORITHMS
Because all four placement problems are NPC, we propose

greedy approximation algorithms for each problem, which
iteratively add a PMU in each step to the node that ob-
serves the maximum number of new nodes. We present two
such algorithms, one which directly addresses MaxObserve
(greedy) and the other MaxObserve-XV (xvgreedy).

4Each variable must be used in at least a single clause, or it
is not considered part of the formula. If there is a variable
that has no impact on the truth value of φ, we always place
the PMUs on two nodes (both T or both F) that are adjacent
to a clause node.

greedy and xvgreedy can easily be used to solve FullOb-
serve and FullObserve-XV, respectively, by selecting the
appropriate k value to ensure full observability.
greedy Algorithm. We start with Φ = ∅. At each itera-

tion, we add a PMU to the node that results in the observa-
tion of the maximum number of new nodes. The algorithm
terminates when all PMUs are placed. 5

xvgreedy Algorithm. xvgreedy is almost identical to
greedy, except that PMUs are added in pairs such that the
selected pair observe the maximum number of nodes under
the condition that the PMU pair satisfy one of the cross-
validation rules.

Our Technical Report [9] gives the pseudo code for greedy
and xvgreedy and includes proofs that these algorithms have
polynomial complexity, making them feasible tools for ap-
proximating optimal PMU placement.

5. SIMULATIONS
Topologies. We evaluate our approximation algorithms

using simulations over IEEE topologies as well as synthetic
ones. As is standard practice in the literature [3, 5, 12, 15],
we use IEEE bus systems 14, 30, 57, and 118 6. The bus
system number indicates the number of nodes in the graph
(e.g., bus system 57 has 57 nodes). Synthetic graphs are then
generated based on each of these topologies, and are used to
quantify the performance of our greedy approximations. We
use synthetic topologies in order to establish the statistical
significance of our results.

Since observability is determined by the connectivity of
the graph, we use the degree distribution of IEEE topolo-
gies as the template for generating our synthetic graphs. A
synthetic topology is generated from a given IEEE graph by
randomly “swapping” edges in the IEEE graph. Specifically,
we select a random v ∈ V and then pick a random u ∈ Γ(v).
Let u have degree du. Next, we select a random w /∈ Γ(v)
with degree dw = du − 1. Finally, we remove edge (v, u)
and add (v, w), thereby preserving the node degree distribu-
tion. We continue this swapping procedure until the original
graph and generated graph share no edges, and then return
the resulting graph.

Evaluation Methods. We are interested in evaluating
how close our algorithms are to the optimal PMU placement.
Thus, when computationally possible (for a given k) we use
brute-force algorithms to iterate over all possible placements
of k PMUs in a given graph and select the best PMU place-
ment. When the brute-force algorithm is computationally
infeasible, we present only the performance of the greedy
algorithm. 7 In what follows, the output of the brute-force
algorithm is denoted optimal, and when we require cross-
validation it is denoted xvoptimal.

We present three different simulations in Section 5.1-5.3.
In Section 5.1 we consider performance as a function of the
number of PMUs, and in Section 5.2 we investigate the per-
formance impact of the number of zero-injection nodes in
the network. These two sections use synthetic graphs. We

5The same greedy algorithm is proposed by Aazami and Stilp [2].
6http://www.ee.washington.edu/research/pstca/
7Because of the computational cost of the brute-force algorithm
for larger topologies (e.g., IEEE bus system 300 and other more
complicated systems), we have no reference in which to measure
the effectiveness of our greedy approximations for larger scale
systems. Therefore, we do not present results for topologies larger
than IEEE bus 118.



conclude in Section 5.3, where we compare these results to
the performance over the actual IEEE graphs.

5.1 Simulation 1: Impact of Number of PMUs
In the first simulation scenario we vary the number of

PMUs and determine the number of observed nodes in the
synthetic graph. Each data point is generated as follows.
For a given number of PMUs, k, we generate a graph, place
k PMUs on the graph, and then determine the number of ob-
served nodes. We continue this procedure until [0.9(x), 1.1(x)]
– where x is the mean number of observed nodes using k
PMUs – falls within the 90% confidence interval.

In addition to generating a topology, for each synthetic
graph we determined the members of VI , VZ . These nodes
are specified for the original graphs in the IEEE bus system
database. Thus, we randomly map each node in the IEEE
graph to a node in the synthetic graph with the same degree,
and then match their membership to either VI or VZ .

We present here results for solving MaxObserve and
MaxObserve-XV. The number of nodes observed given k,
using greedy and optimal, are shown in Figure 6, and Fig-
ure 7 shows this number for xvgreedy and xvoptimal. In
both sets of plots we show 90% confidence intervals. We
omit results for graphs based on IEEE bus 14 because the
same trends are observed.

Our greedy algorithms perform well. On average, greedy
is within 98.6% of optimal, is never below 94% of opti-

mal, and in most cases gives the optimal result. Likewise,
xvgreedy is never less than 94% of xvoptimal and on av-
erage is within 97% of xvoptimal. In about about half the
cases xvgreedy gives the optimal result. These results sug-
gest that despite the complexity of the problems, a greedy
approach can return high-quality results. Note, however,
that these statistics do not include performance over large
topologies (i.e., IEEE graphs 57, 118) when k is large. It is
an open question whether the greedy algorithms used here
would do well for larger graphs.

Surprisingly, when comparing our results with and with-
out the cross-validation requirement, we find that the cross-
validation constraints have little effect on the number of ob-
served nodes for the same k. Our experiments show that on
average xvoptimal observed only 5% fewer nodes than op-

timal. Similarly, on average xvgreedy observes 5.7% fewer
nodes than greedy. This suggests that the cost of imposing
the cross-validation requirement is low, with the clear gain
of ensuring PMU correctness across the network.

5.2 Simulation 2: Impact of Number of Zero-
Injection Nodes

Next, we examine the impact of the number of zero-injection
nodes (|VZ |) on algorithm performance. For each synthetic
graph, we run our algorithms for increasing values of |VZ |
and determine the minimum number of PMUs needed to
observe all nodes in the graph (k∗). For each z := |VZ |,
we select z nodes uniformly at random to be zero-injection,
and the rest are in VI . Because we compute k∗ here, we solve
FullObserve and FullObserve-XV, rather than MaxOb-
serve and MaxObserve-XV as in Simulation 1.

We generate each data point using a similar procedure to
the one described in Section 5.1. For each z, we generate
a graph and determine k∗. We then compute k∗, the mean
value of k∗ using |VZ | = z. We continue this procedure until
[0.9(k∗), 1.1(k∗)] falls within the 90% confidence interval.

greedy xvgreedy optimal xvoptimal

Simulation 1 4% 4.6% 6% 7.6%
Simulation 2 9.1% 16.1% N/A N/A

Table 1: Mean absolute difference between the
computed values from synthetic graphs and IEEE
graphs, normalized by the result for the synthetic
graph.

Figure 8(a) shows the simulation results for solving Ful-
lObserve and FullObserve-XV on synthetic graphs mod-
eled by IEEE bus 57. Results for other topologies considered
here (i.e., 14, 30 and 118) followed the same trend and are
thus omitted. Due to the exponential running time of op-
timal and xvoptimal, we present here only results of our
greedy algorithms.

As expected, increasing the number of zero-injection nodes,
for both greedy and xvgreedy, reduces the number of PMUs
required for full observability. More zero-injection nodes al-
low O2 to be applied more frequently (Figure 8(b)), thereby
increasing the number of observed nodes without using more
PMUs. In fact, we found the relationship between |VZ | to
the greedy estimate of k∗ to be linear.

The gap in k∗ between greedy and xvgreedy decreases as
z grows. greedy and xvgreedy observe a similar number of
nodes via O2 across all z values: the mean absolute differ-
ence in the number of nodes observed by O2 between the
two algorithms is only 1.66 nodes (equivalently, less than
3% of observed nodes). Thus, as z grows the number of
nodes observed by O2 accounts for an increasing proportion
of all observed nodes (Figure 8(b)), causing the gap between
greedy and xvgreedy to shrink.

5.3 Simulation 3: Synthetic vs Actual IEEE
Graphs

In this section, we compare our results with the perfor-
mance over the original IEEE systems. We assign nodes to
VZ and VI as specified in the IEEE database files. Our re-
sults indicate that the trends we observed over the synthetic
graphs apply as well to real topologies.

Figure 8(c) shows the number of observed nodes for the
greedy, xvgreedy, optimal, and xvoptimal algorithms for
IEEE bus system 57. greedy and xvgreedy observe nearly
as many nodes as the corresponding optimal solution. In
many cases, greedy yields the optimal placement. Similarly,
as with the synthetic graphs, the number of PMUs required
to observe all nodes decreases linearly as |VZ | increases. 8

Finally, we consider whether node degree distribution is
an appropriate feature for generating topologies similar to
their IEEE counterparts. To do so, we compare the actual
number of observed nodes for synthetic graphs to those over
IEEE graphs. Specifically, we take the mean absolute differ-
ence between these two values, and normalized by the result
for the synthetic graph. For example, let nk be the mean
number of observed nodes using greedy over all synthetic
graphs with input k, and let nG,k be the output of greedy for
IEEE graph G and k. We compute nd,k = (|nk−nG,k|)/nk.
Finally, we calculate the mean over all nd,k. This process is
done for each algorithm we evaluate. The resulting statis-

8The same trends are observed using IEEE bus systems 14, 30,
and 118.
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Figure 6: Mean number of observed nodes over synthetic graphs – using greedy and optimal – when varying
number of PMUs. The 90% confidence interval is shown.
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Figure 7: Over synthetic graphs, mean number of observed nodes – using xvgreedy and xvoptimal – as a
function of number of PMUs. The 90% confidence interval is shown.

tics can be found in Table 1. The small average difference
between the synthetic and actual IEEE topologies suggests
that the node degree distribution of the IEEE graph is an
effective feature for generating similar synthetic graphs.

6. RELATED WORK
FullObserve is well-studied [3, 4, 10, 12, 15]. Haynes et

al. [10] and Brueni and Heath [4] both prove FullObserve
is NPC. However, their proofs make the unrealistic assump-
tion that all nodes are zero-injection. We drop this assump-
tion and thereby generalize their NPC results for FullOb-
serve. Additionally, we leverage the proof technique from
Brueni and Heath [4] in all four of our NPC proofs, although
our proofs differ considerably in their details.

In the power systems literature, Xu and Abur [15, 16] use
integer programming to solve FullObserve, while Baldwin
et al. [3] and Mili et al. [12] use simulated annealing to
solve the same problem. All of these works allow nodes
to be either zero-injection or non-zero-injection. However,
these papers make no mention that FullObserve is NPC,
i.e., they do not characterize the fundamental complexity of
the problem.

Aazami and Stilp [2] investigate approximation algorithms
for FullObserve. They derive a hardness approximation

threshold of 2log1−ε n. Also they prove that in the worst case,
greedy from Section 4 does no better Θ(n) of the optimal
solution. However, this approximation ratio assumes that
all nodes are zero-injection.

Chen and Abur [5] and Vanfretti et al. [14] both study
the problem of bad PMU data. Chen and Abur [5] formu-
late their problem differently than FullObserve-XV and
MaxObserve-XV. They consider fully observed graphs and
add PMUs to the system to make all existing PMU measure-
ments non-critical (a critical measurement is one in which
the removal of a PMU makes the system no longer fully ob-
servable). Vanfretti et al. [14] define the cross-validation
rules used in this paper. They also derive a lower bound on
the number of PMUs needed to ensure all PMUs are cross-
validated and the system is fully observable.

7. CONCLUSIONS AND FUTURE WORK
In this work, we formulated four PMU placement prob-

lems and proved that each one is NPC. Consequently, fu-
ture work should focus on developing approximation algo-
rithms for these problems. As a first step, we presented two
simple greedy algorithms: xvgreedy which considers cross-
validation and greedy which does not. Both algorithms iter-
atively add PMUs to the node which observes the maximum
of number of nodes.

Using simulations, we found that our greedy algorithms
consistently reached close-to-optimal performance. Our sim-
ulations also showed that the number of PMUs needed to
observe all graph nodes decreases linearly as the number of
zero-injection nodes increase. Finally, we found that cross-
validation had a limited effect on observability: for a fixed
number of PMUs, xvgreedy and xvoptimal observed only
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Figure 8: Figures (a) and (b) correspond to Simulation 2 using synthetic graphs based on IEEE bus 57. The
90% confidence interval is shown in Figure (a) and (b). Figure (a) considers the number of PMUs needed for
full observability as a function of |VZ | and Figure (b) shows the number of nodes observed by O2 for different
|VZ | values. Figure (c) displays the number of observed nodes as a function of the number of PMUs, using
IEEE bus 57.

5% fewer nodes than greedy and optimal, respectively. As a
result, we believe imposing the cross-validation requirement
on PMU placements is advised, as the benefits they provide
come at a low marginal cost.

There are several topics for future work. The success of
the greedy algorithms suggests that bus systems have spe-
cial topological characteristics, and we plan to investigate
their properties. Additionally, we intend to implement the
integer programming approach proposed by Xu and Abur
[15] to solve FullObserve. This would provide valuable
data points to measure the relative performance of greedy.
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