
Computer Networks 51 (2007) 2867–2891

www.elsevier.com/locate/comnet
Performance modeling of epidemic routing

Xiaolan Zhang a,*, Giovanni Neglia b, Jim Kurose a, Don Towsley a

a Department of Computer Science, University of Massachusetts, Amherst, MA 01003, United States
b Università degli Studi di Palermo, Italy

Received 1 October 2006; accepted 20 November 2006
Available online 19 December 2006

Responsible Editor: I.F. Akyildiz
Abstract

In this paper, we develop a rigorous, unified framework based on ordinary differential equations (ODEs) to study epi-
demic routing and its variations. These ODEs can be derived as limits of Markovian models under a natural scaling as the
number of nodes increases. While an analytical study of Markovian models is quite complex and numerical solution
impractical for large networks, the corresponding ODE models yield closed-form expressions for several performance met-
rics of interest, and a numerical solution complexity that does not increase with the number of nodes. Using this ODE
approach, we investigate how resources such as buffer space and the number of copies made for a packet can be traded
for faster delivery, illustrating the differences among various forwarding and recovery schemes considered. We perform
model validations through simulation studies. Finally we consider the effect of buffer management by complementing
the forwarding models with Markovian and fluid buffer models.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Epidemic routing [28] has been proposed as an
approach for routing in sparse and/or highly mobile
networks in which there may not be a contempora-
neous path from source to destination. It adopts a
so-called ‘‘store-carry-forward’’ paradigm – a node
receiving a packet buffers and carries that packet
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as it moves, passing the packet on to new nodes that
it encounters. Analogous to the spread of infectious
diseases, each time a packet-carrying node encoun-
ters a node that does not have a copy of that packet,
the carrier is said to infect this new node by passing
on a packet copy; newly infected nodes, in turn,
behave similarly. The destination receives the packet
when it first meets an infected node. When the traffic
load is very low, epidemic routing is able to achieve
minimum delivery delay at the expense of increased
use of resources such as buffer space, bandwidth,
and transmission power. However this also leads
to link and/or storage congestion when the network
.
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is loaded. Variations of epidemic routing have
recently been proposed that exploit the tradeoff
between delivery delay and resource consumption,
including K-hop schemes [23,6], probabilistic for-
warding [17,8], and spray-and-wait [26,25]. These
different schemes differ in their ‘‘infection process’’,
i.e., the spreading of a packet in the network. They
need to be combined with a so-called ‘‘recovery pro-
cess’’ that deletes copies of a packet at infected
nodes, following the successful delivery of the
packet to the destination. Different recovery
schemes have been proposed: some are simply based
on timers, others actively spread in the network the
information that a copy has been delivered to the
destination [8].

Early efforts evaluating the performance of epi-
demic routing schemes used simulation [28,10,17].
More recently, Markovian models have been devel-
oped to study the performance of epidemic routing
[24,6,8], 2-hop forwarding [6], and spray-and-wait
[26,25]. Recognizing the similarities between epi-
demic routing and the spread of infectious diseases,
[24,8] used ordinary differential equation (ODE)
models adapted from infectious disease-spread
modeling [3] to study the source-to-destination
delivery delay under the basic epidemic routing
scheme, and then adopted Markovian models to
study other performance metrics.

In this paper, we develop a rigorous, unified
framework, based on ordinary differential equations
(ODE), to study epidemic routing and its variations.
The starting point of our work is [6], where the
authors consider common node mobility models
(e.g., random waypoint and random direction
mobility) and show that nodal inter-meeting times
are nearly exponentially distributed when transmis-
sion ranges are small compared to the network area,
and node velocity is sufficiently high. This observa-
tion suggests that Markovian models of epidemic
routing can lead to quite accurate performance pre-
dictions; indeed [6] develops Markov chain models
for epidemic routing and 2-hop forwarding, deriv-
ing the average source-to-destination delivery delay
and the number of extant copies of a packet at the
time of delivery. An analytical study of such
Markov chain models is quite complex for even sim-
ple epidemic models, and more complex schemes
have defied analysis thus far. Moreover, numerical
solution of such models becomes impractical when
the number of nodes is large.

We develop ODEs as a fluid limit of Markovian
models such as [6], under an appropriate scaling as
the number of nodes increases. Through the paper
we show that ODE is a valid tool for investigating
epidemic style routing. In fact this approach allows
us to derive closed-form formulas for the perfor-
mance metrics considered in [6], obtaining matching
results. More importantly, we are also able to use
the ODE framework to further model the recovery
process, to study more complex variants of epidemic
routing, and to model the performance of epidemic
routing with different buffer management schemes
under buffer constraints. While different recovery
processes are studied also in [8] using Markov
chains, model simulation is first needed to determine
a number of model parameters. Many of our ODE
models can be analytically solved, providing closed-
form formulas for the performance metrics of inter-
est; in cases where we resort to numerical solution,
the computational complexity does not increase
with the number of nodes. The drawback of our
ODE models is that they provide the moments of
the various performance metrics of interest, while
numerical solution of Markov chain models can
provide complete distributions (e.g., for the number
of packet copies in the system). Simulation results
show good agreement with the predictions of our
ODE models.

The main purpose of the paper is to show how
ODE models can be advantageously employed to
study the performance of various epidemic style
routing schemes, rather than to provide final con-
clusions about the merits of specific schemes. Never-
theless we have obtained insights into different
epidemic routing schemes through our models. In
particular, we have identified rules of thumb for
configuring these schemes, we have shown the exis-
tence of a linear relation between total number of
copies sent and the buffer occupancy under certain
schemes, and we have demonstrated that the relative
benefit of different recovery schemes depends
strongly on the specific infection process. Finally
our analysis of buffer-constrained epidemic routing
suggests that sizing node buffers to limit packet loss
is not vital as long as appropriate buffer manage-
ment schemes are used.

The remainder of this paper is structured as
follows. Basic epidemic routing and our basic
ODE model are described and derived in Section
2, allowing one to characterize the source-to-desti-
nation delivery delay, the number of copies made
for a packet, and the average buffer occupancy. In
Section 3, it is shown how the ODE model can be
easily extended to three important variations of
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basic epidemic routing (K-hop forwarding, probabi-
listic forwarding and limited-time forwarding), to
the global timeout scheme for deleting anti-packets,
and to include signaling overheads. In Section 4, we
perform validation for these models through simu-
lation. We use these extended models to characterize
the tradeoff between delivery delay and resource
consumption (buffer occupancy, number of copies
made) in Section 5. In Section 6, we integrate the
ODE models with Markov and fluid buffer models
to study the effect of finite buffers, and compare dif-
ferent buffer management strategies. In Section 7,
we review related works and compare our work with
them. Finally, in Section 8 we summarize the paper.

2. Basic epidemic routing

In this section we develop our ODE model for
basic epidemic routing [28], after briefly describing
epidemic routing and the scenario we are consider-
ing. We then use the model to study three different
recovery techniques for deleting packet copies after
the delivery of the packet.

We consider a set of N + 1 nodes, each with a
finite transmission range, moving in a closed area,
and different source–destination pairs. We say that
two nodes ‘‘meet’’ when they come within transmis-
sion range of each other, at which point they can
exchange packets. Let us focus on a single packet.
The analogy with disease spreading is useful in
describing epidemic routing. The source of the
packet can be viewed as the first carrier of a new dis-
ease, the first infected node, which copies the packet
to (infects) every node it meets. These new infected
nodes act in the same way. As a result, the popula-
tion of susceptible nodes (i.e., nodes without a copy
of the packet) decreases over time. Once a node car-
rying the packet meets the destination, it passes the
packet on to the destination, deletes the packet from
its own buffer, and retains ‘‘packet-delivered’’ infor-
mation (an ‘‘anti-packet’’) which will prevent it
from receiving another copy of this packet in the
future. Such a node is said to have recovered from
the disease. Here the recovery process simply relies
on meeting with the destination. We will shortly
consider more sophisticated recovery schemes.

Consider now many packets spreading at the same
time in the network. We assume that when two nodes
meet they can exchange an arbitrary number of pack-
ets, and each node has enough buffer to store all
packets (the latter assumption is relaxed in Section
6), thus allowing different infections to be considered
independently. We also assume a mechanism exists
so that nodes never exchange a packet if both nodes
are already carrying a copy of that packet (more
details in Section 3.3).

2.1. ODE models for basic epidemic routing

As noted earlier, [6] showed that the pairwise
meeting time between nodes is nearly exponentially
distributed, if nodes move in a limited region (of
area A) according to common mobility models
(such as the random waypoint or random direction
model [2]) and if their transmission range (d) is small
compared to A, and their speed is sufficiently high.
The authors also derived the following estimation
of the pairwise meeting rate b:

b � 2wdE½V ��
A

; ð1Þ

where w is a constant specific to the mobility model,
and E[V*] is the average relative speed between two
nodes. Under this approximation, [6] showed that
the evolution of the number of infected nodes can
be modeled as a Markov chain.

We introduce our modeling approach starting
from the Markov model for basic epidemic routing
before the delivery of a copy to the destination.
Given nI(t), the number of infected nodes at time
t, the transition rate from state nI to state nI + 1 is
rN(nI) = bnI(N � nI), where N is the total number
of nodes in the network (excluding the destination).
If we rewrite the rates in a ‘‘density dependent
form’’, as rN(nI) = Nk(nI/N) (1 � nI/N) and assume
that k = Nb is constant, we can apply Theorem
3.1 in [16] to prove that, as N increases, the fraction
of infected nodes (nI/N) converges asymptotically to
the solution of the following equation:1

i0ðtÞ ¼ kiðtÞð1� iðtÞÞ; for t P 0 ð2Þ

with initial condition i(0) = limN!1nI(0)/N. The
average number of infected nodes then converges
to I(t) = Ni(t) in the sense of Footnote 1. The fol-
lowing equation can be derived for I(t) from Eq. (2):

I 0ðtÞ ¼ bIðN � IÞ ð3Þ

with initial condition I(0) = Ni(0). Such an ODE,
which, as we have shown, results as a fluid limit of
a Markov model as N increases, has been commonly
used in epidemiology studies, and was first applied
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to epidemic routing in [24] as a reasonable
approximation.

We remark that (1) the initial population of
infected nodes must scale with N, and (2) the pair-
wise meeting rate must scale as 1/N. Eq. (1) provides
insight into the physical interpretation of this meet-
ing rate scaling: in particular if the area A increases
with N, keeping node density constant, then b scales
with 1/A, i.e., 1/N. In the following we will consider
Eq. (3) with initial condition I(0) = 1, which corre-
sponds to an initial fraction of infected nodes
i(0) = 1/N. Despite the ‘‘small’’ number of initial
infected nodes, we will see via our simulation results
that the approximation is a good one. We also note
that Eq. (3), as well as other related equations we
will derive shortly, can also be obtained in a differ-
ent manner from Markovian models by neglecting
terms related to higher moments (the details are
given in Appendix C).
2.2. Delay under epidemic routing

Let Td be the packet delivery delay, i.e., the time
from when a packet is first generated at the source
to the time when it is first delivered to the destina-
tion, and denote its Cumulative Distribution Func-
tion (CDF) by P(t) = Prob(Td < t). Under the same
scaling and approximations considered earlier, we
can derive the following equation for P(t):
P 0(t) = ki(1 � P), where i(t) is the solution of Eq.
(2). Let us consider PN(t), the CDF of Td when
the number of nodes in the system is N + 1, i.e.,
there are N nodes plus one destination node. We
have

P N ðt þ dtÞ � P N ðtÞ
¼ Probft 6 T d < t þ dtg
¼ Probfdestination meets an infected node in ½t; t þ dt�jT d > tg
� ProbfT d > tg
¼ Probfdestination meets one of the nI ðtÞ infected nodes in

½t; t þ dt�g � ð1� P N ðtÞÞ
¼ E½Probfdestination meets one of the nI ðtÞ infected nodes in

½t; t þ dt�jnI ðtÞg� � ð1� P N ðtÞÞ � E½bnI ðtÞdt�ð1� P N ðtÞÞ

¼ bE½nI ðtÞ�ð1� P N ðtÞÞdt ¼ kE
nIðtÞ

N

� �
ð1� P N ðtÞÞdt:

Note that nI(t) is the number of infected nodes at
time t, given that the destination has not received
a copy of the packet. It implicitly accounts for the
condition Td > t. The following holds for PN(t):

dP N

dt
¼ kE

nIðtÞ
N

� �
ð1� P N ðtÞÞ:
As N increases, E[nI(t)/N] converges to i(t), and
PN(t) converges to the solution of

P 0ðtÞ ¼ kiðtÞð1� P ðtÞÞ:
For a finite population of size N we can consider:

P 0ðtÞ ¼ bIðtÞð1� P ðtÞÞ: ð4Þ
Eq. (4) was proposed in [24], based on an analogy
with a Markov process. Solving Eqs. (3) and (4)
with I(0) = 1, P(0) = 0 yields

IðtÞ ¼ N
1þ ðN � 1Þe�bNt

; PðtÞ ¼ 1� N
N � 1þ ebNt

:

From P(t), the average delivery delay can be explic-
itly found as

E½T d � ¼
Z 1

0

ð1� P ðtÞÞdt ¼ ln N=ðbðN � 1ÞÞ: ð5Þ

The average number of copies of a packet in the sys-
tem when the packet is delivered to the destination
under epidemic routing, E[Cep], can also be derived,
as it coincides with the average number of infected
nodes in the system, apart from the source, when
the packet is delivered (details given in Appendix
E): E½Cep� ¼

R1
0

IðtÞP 0ðtÞdt � 1 ¼ N�1
2

.
Using a Markov chain model, [6] obtained the

same results for the number of copies, computed
the Laplace–Stieltjes Transform (LST) of the delay,
and from the LST found the following asymptotic
expression for the average delay as N !1 :

1
bðN�1Þ ðln N þ cþOð1

NÞÞ, matching Eq. (5). We note
that the derivation is much simpler using our
ODE model.

2.3. Recovery from infection

In the last section, we studied the delivery delay,
and the number of copies made at delivery time
under epidemic routing. In this section, we study
the recovery schemes proposed in [8].

Clearly, once a node delivers a packet to the des-
tination, it should delete the packet from its buffer
to save storage space and prevent the node from
infecting other nodes. Moreover, to avoid being
reinfected by the packet, a node can keep track of
packet delivery. We refer to this information stored
at the node as ‘‘anti-packet’’, and refer to this
scheme of handling already-delivered packets as
the IMMUNE scheme. A more aggressive approach
toward deleting obsolete copies is to propagate anti-
packets among nodes. An anti-packet can be prop-
agated only to infected nodes (which we will refer to



Table 1

Summary of closed-form expressions obtained for different schemes

Schemes I(t) E[Td] E[C],E[G] E[Q]

P(t)

Epidemic
IðtÞ ¼ N

1þ ðN � 1Þe�bNt

P ðtÞ ¼ 1� N
N � 1þ ebNt

ln N
bðN � 1Þ E½C� ¼ N � 1

2
E½G� � N � 1ðIMÞ

E½G� ¼ N � 3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � 2N þ 5

p
2

ðIM TXÞ

� Nk=bðIMÞ

� k
N � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � 2N þ 5

p
2b

ðIM TXÞ

2-hop IðtÞ ¼ N � ðN � 1Þe�bt

P ðtÞ ¼ 1� eN�1�bNt�ðN�1Þe�bt

1

b

ffiffiffi
p
2

r
1ffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p E½C� ¼

ffiffiffi
p
2

r ffiffiffiffi
N
p

;G ¼ N � 1

2
ðIMÞ kðN þ 1Þ

2b
ðIMÞ

Prob. forwarding
IðtÞ ¼ N

1þ ðN � 1Þe�pbNt

P ðtÞ ¼ 1� N
N � 1þ epbNt

� �1=p

lnðNÞ
bðN � 1Þ ;

lnðNÞ
bpðN � 1Þ

� �
E½C� ¼ pðN � 1Þ

1þ p

Limited-time

forwarding (no

reinfection)

IðtÞ ¼ a2 þ ebða2�a1Þt þ A
Aþ ebða2�a1Þt

a1;2 ¼
ðbN � lÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbN � lÞ2 þ 4bl

q
2b

a1 < 0; a2 > 0;A ¼ a2 � 1

1� a1

�
N!1

1

b

lnðN � l
bÞ

N � l
b

�
l!1

l� Nb
bl

�
N¼l

b!1

p

2b
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

Global timeout
P ðtÞ ¼ 1� N

N � 1þ ebNt
; t 6 T

P ðtÞ ¼ 1� ebbðT�tÞ

N
N � 1þ ebNT

; t > T ; b ¼ IðT Þ

lnðNÞ
bðN � 1Þ �

lnð1þ ðN � 1Þe�bNT Þ
bðN � 1Þ þ 1

bebNT
E½C� ¼ N � 1

2
� N 2ðN � 1Þ

2ðebTN þ N � 1Þ2

Global timeout(2)
P ðtÞ ¼ 1� N

N � 1þ ebNt
; t 6 T

P ðtÞ ¼ 1� NebðT�tÞ

N � 1þ ebNT
; t > T

lnðNÞ
bðN � 1Þ �

lnð1þ ðN � 1Þe�bNT Þ
bðN � 1Þ

þ N
bðebTN þ N � 1Þ

E½C� ¼ N � 1

2
� N 2ðN � 1Þ

2ðebTN þ N � 1Þ2
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as the IMMUNE_TX scheme), or to both infected
and susceptible nodes (VACCINE scheme). We
study the following two metrics for epidemic rout-
ing under these different recovery schemes. One is
the average number of times a packet is copied dur-
ing its lifetime, excluding the copy to the destina-
tion, denoted as E[G]. This value is greater than or
equal to E[C], because more copies can be made
after the delivery to the destination. This metric is
strongly related to the bandwidth requirement,
and transmission power consumption of a specific
scheme. The other is the average buffer occupancy
at each node E[Q], for which we are going to derive
an expression under a specific traffic pattern. The
two metrics are related each other and they both
depend on the specific recovery process.

In order to study these two metrics, similar to our
earlier analysis in Section 2.1, we can derive ODEs
that take into account the recovery processes as
the limit of Markov models (details are deferred to
Appendix A), with the additional consideration that
we need to scale the number of destinations nD in a
manner similar to the scaling of the number of ini-
tially infected nodes, i.e., limN!1nD/N = d. For
example, if we consider the IMMUNE scheme, the
number of infected and recovered nodes should be
respectively close to I(t) and R(t), which are solu-
tions of the following equations:

I 0ðtÞ ¼ bIðN � I � RÞ � bID; ð6Þ
R0ðtÞ ¼ bID; ð7Þ

where D is the number of destinations, and we con-
sider I(0) = 1, R(0) = 0, D = 1. This model allows
us to evaluate the average number of times that a
packet is copied during its lifetime, E[Gep]. In fact
the total number of copies made for a packet equals
the number of nodes that have ever been infected,
i.e., E[Gep] = limt!1(I(t) + R(t)) � I(0). A good
approximation for E[Gep] can be found through the
previous equations by expressing I as a function of
R, without the need to solve for I(t) and R(t). Analo-
gous ODEs can be derived for the IMMUNE_TX
and VACCINE schemes, and a closed formula can
be derived for E[Gep] for the IMMUNE_TX scheme.
Numerical solutions are needed for the VACCINE
scheme (see Table 1 for closed-form results and
Appendix B for the detailed derivations).

We next consider the average buffer occupancy
E[Q], in the case of N + 1 unicast flows, with each
node being the source of one flow and destination
for one other flow. The packet generation process
in each flow is a Poisson process with rate k. Denote
by L the average packet lifetime (the time from when
the packet is generated by the source node to when
all copies of the packet are removed from the sys-
tem). The average number of copies of a packet
in the system during its lifetime is given byR1

0
IðtÞdt=L, where I(t) is the solution to the ODEs

that include the recovery process. As the total arrival
rate of new packets to the system is (N + 1)k, by
Little’s law, the average number of packets in the
system is (N + 1)kL. Therefore the average total
buffer occupancy in the whole network is given by
E½Qtotal� ¼ ð

R1
0

IðtÞdt=LÞðN þ 1ÞkL ¼
R1

0
IðtÞdtðNþ

1Þk, and the per-node buffer occupancy is thus
E½Q� ¼ k

R1
0

IðtÞdt.
Modeling a node’s buffer as an M/M/1 queue

gives the same result and shows a linear relationship
between the average buffer occupancy and the num-
ber of copies made under the IMMUNE scheme. In
fact, given that each packet is copied E[Gep] times,
each flow generates relay traffic at rate E[Gep]k, and
the total rate of relay traffic in the network is
E[Gep]k(N + 1) (as there are N + 1 flows). This traffic
is equally divided among the N + 1 nodes, hence the
arrival rate of relay packets to each node is E[Gep]k,
and the total packet arrival rate is k(1 + E[Gep]). If
a copy is deleted only when the node meets the desti-
nation,2 the service rate is 1/b and the average buffer
occupancy is E½Q� ¼ k

b ð1þ E½Gep�Þ.

3. Extended model

The schemes in the previous section all share the
same infection process: they propagate a packet
among nodes in a flooding/epidemic manner, but
differ in the way they counteract the infection after
the packet has been delivered to the destination.
As results in Table 1 show, this can lead to substan-
tial differences in terms of buffer occupancy and the
total number of copies made for a packet. Depend-
ing on the specific applications, it might be prefera-
ble to trade off timely delivery for savings in
resource consumption, by changing the way packets
are propagated among nodes. We describe in Sec-
tion 3.1 K-hop forwarding, probabilistic forwarding
and limited-time forwarding that allow us to achieve
such tradeoff. In Section 3.2, we introduce the
global timeout scheme that naturally addresses the



3 There is no need to scale the timer rate l, while we need to
scale b as we noted in Section 2.1.
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problem of deleting anti-packets. We discuss how
ODE models can be used to model signaling over-
head in Section 3.3. All the ODEs models we pro-
pose can be derived as limits of Markovian
models, similarly to what we have shown in Section
2.1. We do not detail the derivations, but only stress
the peculiarities (if any) to be taken into account
when applying the limiting theorem.

3.1. Trade-off schemes

3.1.1. K-hop forwarding

Under K-hop forwarding, a packet can traverse at
most K hops to reach the destination. We can use
ODE models to model the K-hop forwarding scheme,
as we demonstrate for K = 2. Under 2-hop forward-
ing, the source copies the packet to every node it
meets until it meets the destination; relay nodes do
not copy the packet to any other node except the des-
tination. As the packet spreads at a rate proportional
to the number of susceptible nodes, the following
equations model the delivery delay:

I 0ðtÞ ¼ bðN � IÞ;
P 0ðtÞ ¼ bIð1� P Þ
with initial condition: I(0) = 1 and P(0) = 0. Note
that in order to derive the previous equations from
the Markovian model similarly to what we did in
Section 2.1, we need to let the number of source
nodes scale with N.

This ODE system can be solved explicitly, from
which we can then derive an asymptotic expression
for the average delivery delay and the average num-
ber of copies until delivery (see Table 1 for the
results and Appendix D for the derivation). These
results again match those obtained in [6] using a
Markov Chain model.

We can apply analysis similar to Section 2.3 to
study the number of copies made and the average
buffer occupancy for given recovery schemes. For
IMMUNE recovery, we obtain more accurate model
through the following derivations. Let G2hop(N) be
the number of times a packet is copied during its life
time (excluding the copy to the destination) for 2-
hop forwarding. For each packet, the source node
copies the packet to every relay node it meets before
it meets the destination. Therefore G2hop(N) equals
the number of nodes the source node meets before
meeting the destination. As the inter-meeting times
between pairs of nodes are i.i.d. exponential random
variables, the destination node is equally likely to be
the ith node to meet the source node, for i = 1, . . . ,N.
Therefore we have PrðG2hopðNÞ ¼ iÞ ¼ 1
N, for i =

0, . . . ,N � 1, and hence E½G2hopðNÞ� ¼ N�1
2

. Given
G2hop(N), we can derive the average buffer occu-
pancy using a M/M/1 model with the departure
rate b, using an approach similar to what we
described in Section 2.3.

3.1.2. Probabilistic forwarding

Probabilistic forwarding is similar to epidemic
routing except that when two nodes meet, each node
accepts a relay packet with probability p. When
p = 0, the probabilistic forwarding degenerates to
direct source–destination delivery, and when p = 1,
epidemic routing is performed. Varying p in the
range (0, 1) allows a trade-off between storage/trans-
mission requirements and delivery delay. We can
model the delivery delay using the following ODEs:

dI
dt
¼ bpIðN � IÞ;

dP
dt
¼ bIð1� P Þ

with I(0) = 1, P(0) = 0. We derived a closed-form
solution for this ODEs, from which we then derived
bounds for the average delay, and close-form for-
mula for the number of copies at delivery time
(Table 1). Similar to basic epidemic routing case,
we derived a ODE model to study Gprob and the aver-
age buffer occupancy under probabilistic forwarding.

3.1.3. Limited-time forwarding

Under limited-time forwarding, when a node
accepts a packet copy, it starts a timer with duration
drawn from an exponential distribution with rate l.
When the timer expires, the copy is deleted from the
buffer. The choice of timeout value allows us to
trade off the delivery delay against storage and num-
ber of transmissions. In order to guarantee the even-
tual delivery of each packet, a node does not time
out a packet for which it is the original source.
When a packet copy in a node times out, the node
can either store an anti-packet (so that it will not
be infected by the packet again), or keep no infor-
mation (in which case it become susceptible to the
packet again).

The former scheme can be studied by the follow-
ing ODEs, where T(t) is the number of timed out
nodes at time t. As above these ODEs can be
derived as limit of Markovian models.3



4 Under the scheme they considered, when the packet timer
expires, all copies and anti-packets of the packet are deleted from
the network. We note that there is a non-zero probability that the
packet is not delivered to the destination.

2874 X. Zhang et al. / Computer Networks 51 (2007) 2867–2891
dI
dt
¼ bIðN � I � T Þ � lðI � 1Þ;

dT
dt
¼ lðI � 1Þ;

dP
dt
¼ bIð1� PÞ:

We numerically solved this ODEs to calculate the
average delivery delay, E[Td]. Similar to epidemic
routing, by extending the ODEs to include recovery
processes, we are able to evaluate numerically the
average number of copies made for a packet E[G]
and the average buffer occupancy E[Q].

The latter scheme can be studied using the fol-
lowing ODEs:

dI
dt
¼ bIðN � IÞ � lðI � 1Þ;

dP
dt
¼ bIð1� PÞ:

The ODEs can be solved explicitly and an asymp-
totic expression for the average delay can be found
(see Table 1 for the results, and Appendix D for
details).

We found that if l P Nb the number of infected
nodes goes to zero as t!1. In this case limited-
time forwarding can perform recovery via timeout
and there is no need for explicitly transmitted
anti-packets, the epidemic spreading will eventually
die out in this case. The asymptotic delay for
l = Nb equals p

2b
ffiffiffiffiffiffiffi
N�2
p (see Appendix D).

3.2. Handling anti-packets: global timeout scheme

Under the recovery schemes, IMMUNE,
IMMUNE_TX and VACCINE (Section 2.3), nodes
store and propagate anti-packets to delete obsolete
packet copies in order to save buffer space and num-
ber of copies sent for a packet. Although anti-pack-
ets are typically much smaller than data packets, a
way is needed to delete anti-packets: otherwise, the
buffer space taken up by anti-packets will grow infi-
nitely. In this section, we describe a global timeout
scheme for deleting anti-packets.

Under the global timeout scheme, as the name
suggests, there is a global timer associated with each
packet: acting upon the copies and anti-packets for
the packet stored at all the nodes. Before the timer
expires, the packet is propagated according to the
forwarding scheme employed. When the timer
expires, all anti-packets will be deleted; the infected
nodes keep their copies of the packet, but can only
forward the copy to the destination. Notice that as
there is no relaying after time T, nodes do not need
to keep anti-packets from then on.

As [24] suggested, a global timer can be imple-
mented as follows.4 The source node sets a TTL
(Time-To-Live) field to duration T for each packet
generated. The TTL field is decreased as time
passes. Whenever the packet is copied to another
node, the new copy’s TTL field is set to the remain-
ing TTL field of the old copy; when an anti-packet is
generated at the destination, its TTL field is set to
the same value as the data packet being delivered.

The global timeout scheme is similar to spray and
wait [26] in that both schemes have two phases: epi-
demic style forwarding phase and direct delivery
phase. While spray and wait limits the spreading
by specifying the maximum number of copies, our
scheme limits the spreading by setting a duration.
We will see in Section 5 that varying the timeout
value T allows a tradeoff between delivery delay
and resource consumption.

We now demonstrate how ODEs can be used to
model this global timeout scheme using the example
of epidemic routing with IMMUNE recovery. As
usual, let I(t) be the average number of infected nodes
at time t, given that the packet has not been delivered;
and P(t) be the CDF of delivery delay. Before the
timer expires, the packet propagates according to epi-
demic routing; while after the timer expires, the
packet can be only forwarded to the destination.
Therefore, I(t), P(t) satisfy the following ODEs:

I 0ðtÞ ¼ bIðtÞðN � IðtÞÞ; t 6 T ;

I 0ðtÞ ¼ 0; t > T ;

P 0ðtÞ ¼ bIðtÞð1� P ðtÞÞ:

The initial conditions are I(0) = 1, P(0) = 0. When
deriving these ODEs from the Markovian model,
one has to take into account that the system has
time-dependent transition rates (in particular they
changes at time T). Nevertheless the same kind of
convergence holds. It can be proven by applying
Theorem 3.1 in [16] separately to the system trajec-
tories before time T and after time T and then
appropriately join them.

The ODEs can be explicitly solved, and allow us
to derive the average delivery delay and the number
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of copies made for a packet at delivery time (see
Table 1 for the results). After time T, the packet
can only be forwarded to the destination, hence
the total number of copies made for a packet
(exclude the copy to the destination) is given by
Ggt = I(T) + R(T) � I(0) under IMMUNE and
IMMUNE_TX scheme, where I(t) and R(t) are
solutions to Eqs. (A.1)–(A.4) respectively. Under
VACCINE, the total number of copies made is
given by C(T), where C(t) is solution to Eq. (A.8)
in Appendix A. For the average buffer occupancy,
E[Q], the following equation (derived in Section
2.3) still applies: E½Q� ¼ k

R1
0

IðtÞdt.
An alternative scheme is to delete all anti-packets

and copies of the packet, except at the source node,
when the timer expires. Compared to the previous
scheme, this scheme saves buffer space but incurs
larger delivery delay. Under this scheme, P(t) satis-
fies the following ODE:

P 0ðtÞ ¼ bIðtÞð1� P ðtÞÞ; t 6 T ;

P 0ðtÞ ¼ bð1� P ðtÞÞ; t > T :

We derived close-form solution to the above ODEs,
and obtained explicit formula for the average deliv-
ery delay (see the global timeout (2) in Table 1). The
average number of copies made at delivery time,
E[C], and during a packet’s lifetime, E[G], are the
same as under the original global timeout scheme.
5 For the purpose of clarity, we ignore some optimizations that
can be used to save overhead. For example, when two infected
nodes for packet i meet, after one node sends its packet headers,
the other node, knowing the previous node has packet i, need not
send packet i header to B.
3.3. Signaling overhead

We have so far studied the number of copies
made for a packet and the average storage occu-
pancy incurred by data packets, but ignored the sig-
naling overhead. We now discuss the signaling
overhead involved in epidemic style routing, using
the global timeout scheme to delete anti-packets.

We assume that when two nodes move into the
transmission range of each other, they perform the
following steps:

1. exchange identification information, i.e., node
ID,

2. exchange header information of data packets,
3. exchange anti-packets information,
4. actual packet exchanges.

The transmission cost of the step 4 has already
been studied in Section 2.3. The amount of informa-
tion exchanged in steps 2 and 3 are different for dif-
ferent forwarding and recovery schemes respectively.
For example, under K-hop, the packet header for a
packet with hop count K � 1 does not need to be
sent to other relay nodes. Likewise, while IMMU-
NE_TX only propagate anti-packets to infected
nodes, VACCINE propagate anti-packets to all
nodes.

Extending ODE models to consider signaling
overhead is straightforward as we illustrate using
the basic epidemic routing with IMMUNE recovery
and global timer of duration T as an example. Let
I(t) and R(t) be the average number of infected
and recovered nodes respectively at time t, taking
into account the recovery process. We have:

I 0ðtÞ ¼ bIðN � I � RÞ � bI ; t 6 T ;

I 0ðtÞ ¼ �bI ; t > T ;

R0ðtÞ ¼ bI ; t 6 T :

Since all anti-packets are deleted after the timer ex-
pires, we have R(t) = 0 for t > T. Under a packet ar-
rival rate of k, Qanti, the average per-node buffer
occupancy of anti-packets, is given by Qanti ¼
k
R T

0
RðtÞdt, following an argument similar to that

in Section 2.3.
Now let us consider the overhead of exchanging

packet headers and anti-packets. Let H(t) and A(t)
respectively denote the average number of packet
headers and anti-packets that are exchanged among
all the nodes up to time t, we have:

H 0ðtÞ ¼ bIðN þ 1Þ; t 6 T ;

H 0ðtÞ ¼ bI ; t > T ;

A0ðtÞ ¼ bI :

Intuitively, before time T, the packet header is sent
by infected nodes to every node they meet.5 After
the timer expires, the packet header is sent only to
the destination node. Anti-packets are transmitted
by the destination node to infected nodes when they
meet under IMMUNE, before or after T. For any
packet, the average total number of times the packet
header and anti-packet is exchanged is given by
Qh = H(1) and Qa = A(1), respectively. Numeri-
cal techniques can be used to evaluate these metrics.
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4. Model validation

We have developed a simulator that simulates
various routing schemes and recovery schemes
under random waypoint and random direction
models. The results we present here are for a specific
setting considered in [6]: N + 1 nodes move within a
20 · 20 terrain according to random direction
model [2,7]. Each node chooses an initial direction,
speed and travel time, and then travels in that direc-
tion with given speed for the chosen travel time.
When the travel time expires, the node chooses a
new direction, speed and travel time at random,
independently of all previous directions, speeds
and travel times. If a node hits the boundary of
the terrain, it wraps around at the other side of
the terrain. The node speed is chosen uniformly
in the range 4–10, and the mean travel duration is
1/4. The transmission range of the nodes is chosen
to be 0.1. The pair-wise meeting rate for this setting
is found to be b = 0.00435 using the formula in [6].

We simulate N + 1 unicast flows, with each node
being the source of one flow, and the destination of
another flow. Each flow generates packets at a Pois-
son rate of k = 0.01. The simulation is run long
enough such that at least 500 packets are generated
and delivered. We then use the 500 observations to
calculate the mean and 95% confidence interval for
packet delivery delay and the total number of copies
made for a packet. Average buffer occupancy is cal-
culated after removing the initial transient period
from the trace. These simulation results are then
compared with the ODE model predictions.
We report relative modeling error, defined as
(Vs � Vm)/Vm, where Vm is the model predicted
value and Vs is the simulation result. We calculate
the 95% confidence interval for the relative model-
ing errors using the 95% confidence interval for
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Fig. 1. Delay under epidemic routing. (a) Average dela
Vs. We do not consider signaling overhead as we
expect to observe similar prediction performance
for these metrics.

We first consider basic epidemic routing. We vary
N between 5 and 160, and plot the mean and 95%
confidence interval of packet delivery delay
obtained from simulation, and the model prediction
in Fig. 1a. We find that the model is able to accu-
rately predict the delivery delay, capturing the per-
formance trend as N increases. Fig. 1b compares,
for N = 160, the CDF of packet delivery delay
obtained from simulation with the one predicted
by Eq. (4). It shows that ODE model under predicts
the packet delivery delay. To investigate modeling
errors, we ran another simulation with nodes meet-
ing according to a Poisson process with rate
b = 0.00435 (i.e., we set the meeting rate in the sim-
ulation to exactly match the model’s meeting rate)
and the results of the two simulations are very close
(see the curve labeled as ‘‘Poisson Simulation’’ in
Fig. 1b). This suggests that the error introduced
by the Poisson meeting process approximation is
negligible. We conjecture that the prediction errors
are mainly due to the small number of initially
infected nodes and/or total nodes number. This is
confirmed by simulations where we vary the number
of initially infected nodes, and found the modeling
error becomes smaller when the number of initially
infected nodes is large. We also used a moment-clo-
sure technique to derive an ODE system involving
second moments using the MVN method (details
are given in Appendix C). The modified ODE pro-
vided a better prediction for average delivery delay
and the CDF of delivery delay (Fig. 1).

For epidemic routing with different recovery
schemes, Fig. 2 plots E[Gep(N)]/N, and the average
buffer occupancy E[Q] as predicted by the model
and obtained from simulation. We find that the
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Fig. 2. Copies sent and buffer occupancy under epidemic routing. (a) E[Gep]/N. (b) Buffer occupancy under IMMUNE. (c) Buffer
occupancy under IMMUNX_TX and VACCINE.
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ODE models are more accurate for IMMUNE than
for VACCINE. In some sense, any error in the
infection process modeling is amplified by the expo-
nentially fast recovery of VACCINE. We observe
that IMMUNE_TX only slightly reduces the num-
ber of copies sent for each packet, while VACCINE
further reduces the number of copies sent. The
reduction in buffer requirements is similar for
IMMUNE_TX and VACCINE.

Fig. 3 plots the relative modeling error for these
three recovery schemes. We observe that as N

increases, the error decreases. While ODE models
over predict the copies sent and average buffer occu-
pancy for IMMUNE recovery, they under predict
buffer occupancy for IMMUNE_TX recovery, and
under predict both metrics for VACCINE recovery.

Next, we present validation results for the for-
warding schemes introduced in Section 3, focusing
on the following three metrics, average delay,
E[Td], average buffer occupancy, E[Q], and average
total number of copies transmitted, E[G] under
IMMUNE recovery. We expect the prediction
errors to be slightly larger for IMMUNE_TX and
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For the 2-hop forwarding, Fig. 4 compares the
three metrics under varying number of nodes, N,
showing a good match between the modeling results
and simulation results. Fig. 6a plots the relative pre-
diction error.

For probabilistic forwarding scheme, Fig. 5 plots
the three metrics, comparing the model prediction
with the simulation result, Fig. 6b plots the relative
prediction error for probabilistic forwarding. We
observe a larger prediction error for p 2 [0.01, 0.1],
and error decreases as p increases and approaches
to 1. We conjecture the large prediction error in
p 2 [0.01,0.1] is due to the larger variance when p

takes a value in this range (see Appendix C). Like
for epidemic routing, the ODE models under pre-
dicts the delay, whereas over predicts the number
of copies sent and the average buffer occupancy.

For limited time forwarding (with no reinfection
after timeout) under varying average timeout value,
1/l, Fig. 7 plots the three metrics as predicted by the
model and as obtained through simulation, and
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covery; (b) IMMUNE_TX recovery and (c) VACCINE recovery.
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Fig. 9a plots the relative modeling error. We
observe that the relative modeling error decreases
as the average timeout value increases. This was
expected because the higher the number of infected
nodes, the better is the fluid approximation. As in
the case of epidemic routing, the model under pre-
dicts the delay, and over predict the number of cop-
ies sent and the average buffer occupancy.
Finally, for epidemic routing with IMMUNE
recovery and global timeout mechanism, Fig. 8
plots the three metrics under different global time-
out value, T, Fig. 9b plots the corresponding rela-
tive prediction errors. We observe that the ODE
models under predict the delay, and over predict
the number of copies sent and the average buffer
occupancy, as the case for epidemic routing. The
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relative modeling error decreases as the timeout
value T increases, as for limited time forwarding.

5. Performance trade-offs

In this section, we show how the ODE models we
derived can be employed to quantitatively explore
the tradeoff between delivery delay and resource
consumption under different forwarding and recov-
ery schemes, and to determine configuration crite-
ria. It is not our intent to exhaustively explore all
the possible dimensions of epidemic routing (for-
warding schemes, recovery schemes, methods to
manage anti-packets) in order to determine the best
candidate to be used in a specific scenario to opti-
mize a specific performance metric.

Previous work [8,25] investigated the buffer-delay
tradeoff by varying the number of nodes. However,
we believe that the number of nodes is often given,
and it is consequently more important to evaluate the
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performance tradeoffs achieved by different schemes
and/or understand how performance changes as
configurable parameter values change. In terms of
the tradeoff between delay and the number of copies
transmitted, previous work [25,26] only considered
the tradeoff achieved by a special scheme that
enforces a fixed number of copies.

We discuss the delay versus number of copies
transmitted for a packet and delay versus buffer
occupancy tradeoff achieved by different forward-
ing schemes under IMMUNE (Section 5.1) and
VACCINE (Section 5.2). We ignore signaling over-
head in this discussion, because to consider anti-
packets overhead, we need to incorporate ways to
delete anti-packets, for example, by introducing
global timeout scheme. For each scheme and the
particular parameter setting, choosing a different
global timer T results in a different tradeoff between
delivery delay and resource consumptions; there is
not an optimal choice of T unless a optimization
goal is given, for example by assigning weights to
the different metrics (i.e., delivery delay, copies
made for packet and anti-packet, and total storage
occupancy). The latter optimization consideration
is beyond the scope of this paper. The reader inter-
ested into this topics can refer to our work [20].

The results are mainly based on numerical solu-
tion of the previous ODEs (for N = 100, b =
0.00435, k = 0.01), but we also employ asymptotic
results for qualitative considerations.
Table 2
Settings considered for probabilistic, limited-time forwarding, and glob

Probability (p, %) 0.1 0.5 0.8 1 1.5
Timeout (1/l) 0.1 0.5 1 2 5 1
Global timer (T) 0.01 1 2 3 5
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5.1. Performance trade-off under IMMUNE

Fig. 10a and b respectively plot the delay-versus-
number-of-copies-sent and the delay-versus-
buffer-occupancy trade-offs achieved by different
forwarding schemes when IMMUNE recovery is
employed. In the figure, there are four singleton
points corresponding to direct source–destination
transmission, 2-hop, 3-hop forwarding and epidemic
routing. Three curves have been obtained for proba-
bilistic forwarding, limited-time forwarding (without
reinfection) and global timeout respectively; for
these curves, each point corresponds to a different
value of the forward probability p, the mean timeout
interval 1/l or the global timeout T, respectively. All
these parameter values are shown in Table 2.

Let us first consider the delay-versus-number-of-
copies-sent trade-off. One can reduce the number of
copies sent by decreasing p, 1/l or T, but at the
same time the delay will increase. Intuitively, these
schemes behave as the original epidemic routing
as p! 1, 1/l!1 and T!1, whereas p! 0,
1/l! 0 or T! 0 correspond to a no-relaying
scenario in which the packet is only delivered
directly from the source to the destination. The only
difference is for 1/l! 0, the number of copies con-
verges to N/2 (which is the average number of nodes
the source uselessly infects before meeting the desti-
nation). Global timeout scheme appears to be the
best choice when limiting the number of copies
al timeout scheme
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transmitted is the main concern. As a rule of thumb,
one can choose T � E[Td]/2 (=5 in this specific set-
ting), where E[Td] is the average delay under epi-
demic routing. This choice significantly reduces the
number of copies sent from nearly 100 to 6.8, with
delivery delay increased from around 10 to around
30.

Fig. 10b shows that for probabilistic and K-hop
forwarding, the delay-versus-buffer-occupancy
tradeoffs are similar to the delay-versus-copies
tradeoffs. This is due to the proportionality between
the number of copies sent and the buffer occupancy
that we have shown in Section 2.3 for epidemic
routing under IMMUNE. This relation holds for
all schemes where copies are deleted only after the
meeting with the destination, hence also for proba-
bilistic and K-hop forwarding under IMMUNE, but
not for limited-time or global timeout forwarding.
We observe that the limited time forwarding is the
best choice when limiting buffer occupancy is of pri-
mary concern. With a value of 1/l � 2E[Td] (=20 in
this specific setting), the average buffer occupancy is
decreased to about one tenth of that of epidemic
routing, with a small increase in the delivery time.
The delay-versus-buffer tradeoff achieved by global
timeout scheme is very close to that of limited time
forwarding.

5.2. Performance improvement by VACCINE

Fig. 11 shows the tradeoff under various forward-
ing schemes when VACCINE recovery is employed.
For the delay-versus-copies tradeoff (Fig. 11a),
compared to IMMUNE recovery, VACCINE recov-
ery decreases the average number of copies sent for a
packet and the average buffer occupancy for each
forwarding scheme. However, for different schemes,
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(c) delay vs buffer occupancy tradeoff.
different amount of improvements are achieved by
VACCINE recovery: in particular, the largest
improvement is achieved for probabilistic forward-
ing, followed by K-hop forwarding, and then lim-
ited-time forwarding and the global timeout
scheme. The relatively small improvements for lim-
ited-time forwarding and the global timeout scheme
are due to their intrinsic recovery features: nodes
delete packet copies when the timer expires and they
cannot be reinfected. The explanation is more com-
plex for the probabilistic and K-hop forwarding
schemes. Because of the two counteracting pro-
cesses – the counter-infection recovery process due
to anti-packets spreading and the continuing ongo-
ing packet infection – the total recovery speed
depends not only on the recovery scheme but also
on the specific infection process. Given the same
average delivery delay, when the recovery process
starts, the average number of nodes infected and
the current infection rate are higher under probabi-
listic forwarding (its infection rate is exponential,
hence in the long term it is faster than K-hop). For
this reason, we expect the IMMUNE recovery pro-
cess to be significantly ‘‘longer’’ for probabilistic for-
warding than for K-hop forwarding, leading to
larger buffer occupancy and more copies transmitted
for a packet (as shown in Fig. 10). Conversely under
VACCINE, the recovery process is much shorter;
the buffer occupancy is mainly determined by the
initial infection process (before the delivery), and
the difference in the copies transmitted and the
buffer occupancy under probabilistic forwarding
and K-hop scheme becomes much smaller, as shown
in Fig. 11.

Fig. 11b and c plot the delay-versus-buffer-occu-
pancy tradeoff for various forwarding scheme under
VACCINE recovery, where (c) zooms into the small
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buffer occupancy range. Comparing Fig. 11c with a,
we find that the delay-versus-buffer tradeoff is simi-
lar to that of delay-versus-copies tradeoff except
for global timeout scheme. For global timeout
scheme, as Fig. 11b shows, as T increases, the delay
decreases monotonically; whereas, the buffer occu-
pancy increases first and then decreases. To see
why this is the case, Fig. 12 plots the numerical solu-
tions for I(t), the number of infected nodes at time t,
under different settings of T. Basically, under global
timeout scheme, the recovery process after time T is
IMMUNE recovery, which is much slower than
VACCINE recovery, therefore, increasing the time-
out value T not only leads to longer epidemic spread-
ing phase, but also results in faster overall recovery
process. When T is smaller than a certain threshold
(which is around 15 for the specific setting consid-
ered here), the first effect outweighs the second one,
leading to larger buffer occupancy (as illustrated by
T = 2 and T = 10 curves); when T increases further,
the second effect becomes dominant factor, leading
to small buffer occupancy under larger T (as illus-
trated by T = 20, and T = 40 curves).6

6. Epidemic routing under constrained buffer

Thus far, we have assumed that each node has
sufficient space to store all packets. In reality, how-
ever, mobile nodes often have limited storage due to
cost and form factor. Sizing the buffer to limit end-
to-end packet losses due to buffer overflow in store-
carry-forward networks is hard. For example, [8]
studied buffer occupancy variability for the purpose
of buffer sizing, but their model requires an empiri-
cal distribution obtained from simulation. In this
section, we examine the performance of epidemic
6 Recall that Q ¼ k
R1

0 IðtÞdt, as derived in Section 2.3.
routing under the constraint that each node can
store at most B packets. We consider three buffer
management strategies: (i) droptail where newly
arriving packets are dropped if the buffer is full (pre-
viously studied in [28] through simulation), (ii) drop-

head where the oldest packet in the buffer is dropped
to accept newly arriving packets, and (iii) drop-

head_sp, source-prioritized drophead, which gives
priority to packets arriving directly from the node
itself. We describe the model for drophead_sp here;
a full analysis can be found in [29].

Under drophead_sp, when a packet arrives to a
full buffer, the node discards the oldest relay packet
(i.e., a packet it has received from other node) to
make space for the new packet. If all buffered pack-
ets are source packets, and the arriving packet is a
source packet, the oldest source packet is deleted.
Relay packets arriving to a buffer filled with source
packets are not accepted. Therefore, given Pf, the
probability that a node’s buffer is filled with source
packets, the effective infection rate is then b(1 � Pf).
Pf can be derived by modeling the number of node-
buffered source packets as a Markov chain (details
can be found in [29]).

As before, we focus on the spreading of a single
packet. Let Gdhs be the average number of copies
made for each packet under the drophead_sp policy.
Let Is

jðtÞ, for j = 1,2, . . .,B, be the probability that
the packet is the jth newest source packet in the
source node’s buffer, Ij(t), for j = 1,2, . . . ,B, be the
average number of infected relay nodes where
the copy is the jth newest packet in the buffer, S(t)
be the average number of susceptible nodes, and
D(t) be the average number of nodes that have
dropped the packet. Using arguments similar to
those in Section 2.1, we can then use the following
ODEs to model packet spreading in the case of buf-
fer limits. At infected relay nodes (Eqs. (10) and
(11)), the packet becomes older whenever another
packet arrives, with rate ðGdhs þ 1Þk (this is the total
packet arrival rate to a node by an argument similar
to that in Section 2.3). At the source node (Eqs. (11)
and (12)), the copy of this packet becomes older at
rate k, the rate at which new source packets arrive.
S0ðtÞ ¼ �bð1� P f ÞS
XB

i¼1

ðIs
i þ I iÞ; ð8Þ

I 01ðtÞ ¼ bð1� P f ÞS
XB

i¼1

ðI s
i þ I iÞ � ðGdhs þ 1ÞkI1; ð9Þ

I 0jðtÞ ¼ ðGdhs þ 1ÞkðI j�1 � IjÞ; 2 6 j 6 B; ð10Þ
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Is0
1 ðtÞ ¼ �kIs

1; ð11Þ
Is0

j ðtÞ ¼ kðIs
j�1 � Is

jÞ; 2 6 j 6 B; ð12Þ
D0ðtÞ ¼ ðGdhs þ 1ÞkIB þ kIs

B; ; ð13Þ

P 0ðtÞ ¼ b
XB

i¼1
ðIs

i þ I iÞð1� P Þ: ð14Þ
The initial conditions are given by: S(0) = N � 1,
Is

1ð0Þ ¼ 1, Is
jð0Þ ¼ 0, for j = 2, . . . ,B, Ik(0) = 0, for

k = 1, . . . ,B, D(0) = 0, P(0) = 0. We find Gdhs by
solving the following fixed-point problem using a
binary search algorithm: given Gdhs, we numerically
solve the corresponding extended ODE model
(including the recovery process) and calculate the
accumulated amount of flow from state S to I1,
i.e., Gdhs. Given the new value of Gdhs, we then again
solve the ODEs.

We have simulated these schemes, using the same
setting as before (N = 100, k = 0.01, b = 0.00435),
with different buffer sizes B = 5, 10, 20, and com-
pared our ODE results with simulation. Table 3 tab-
ulates the packet loss probability, i.e., the
probability that all the copies of a packet are
dropped before the destination receives one.
Fig. 13 plot the delay distributions predicted for
B = 5, 10, in the range [0,200] and [0, 50] respec-
Table 3
Loss probability under constrained buffer

Buffer
size

Simulation/
model

Droptail Drophead Drophead_sp

5 Simulation 0.9696 0.2234 0.0536
Model 0.8544 0.0928 0.0079

10 Simulation 0.9471 0.0315 0.0
Model 0.7891 0.0088 0.0

20 Simulation 0.899 0.0016 0.0
Model 0.7011 0.0 0.0
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Fig. 13. P(t) under B = 5, 10.
tively so that the difference between schemes can
be seen.

We observe that the models provide reasonable
accurate loss probability predictions, and reflect
the relative performance of the three dropping
schemes. The shape of the distribution probability
function for delivery delay is also well-captured by
the model [29]. We observe that naive droptail per-
forms poorly. Drophead provides fast infection, as
relay packets are always accepted; however, signifi-
cant packet losses are incurred for B 6 10. With
drophead_sp, although the infection spreads slower
than under drophead, more packets are delivered.
If the packet rate is so high that the buffer can only
hold its own source packets, drophead_sp degener-
ates to direct source–destination transmission. Note
that with infinite buffers, the average buffer occu-
pancy for this setting is over 200 (Fig. 2b). Our
results here suggest that similar performance can
be achieved by drophead and drophead_sp with a
much smaller buffer size, equal to only 20 packets.

7. Related work

In the mathematical epidemiology field, there
exists a vast volume of literature about mathemati-
cal models on the spreading of infectious diseases,
including both stochastic and deterministic models
[1,3]. These mathematical techniques have been
applied to various computer networking problems
that exhibit a strong analogy to epidemic spreading
of disease. For example, [14,27,19,31] modeled the
spread of computer virus and worms in computer
networks by adapting epidemiological models. Also,
a number of network applications (protocols) have
adopted epidemic-style spreading communication
for data dissemination and resource discovery, and
therefore epidemic models are a natural way to
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

P
(t)

Delay

Infinite buffer
drophead sp

drophead
droptail

(a) B = 5 and (b) B = 10.



2884 X. Zhang et al. / Computer Networks 51 (2007) 2867–2891
study their performance. These include epidemic
algorithms [4] for maintaining consistency of repli-
cated database, gossip (rumor-based) protocol
[11], broadcast communication [15] and peer-to-peer
data sharing [21] in mobile ad hoc network, and
more recently, epidemic routing [28,8,30] in Delay
Tolerant Networks. Epidemic routing differs from
the other above mentioned broadcast based proto-
cols in that it supports unicast application, using
epidemic style flooding to decrease the delivery
delay.

Based on earlier results in [5], we have used a
homogeneous mixing model employing a single
parameter (derived from mobility parameters) to
capture the contact rate between mobile nodes.
Refs. [15,19] considered similar network settings as
our work, i.e., mobile ad hoc network. Ref. [15]
made a similar homogeneous mixing assumption,
and obtained the contact rate through finding
best-fitting formula from results of many simulation
runs. Ref. [19] considered a network with higher
node density and slower nodal mobility than our
paper, and extended Kephart–Whilte model [13] to
model the virus spreading, characterizing the frac-
tion of nodes with varying connectivities under
given mobility models.

Another important difference between our work
and the above mentioned work lies in the fact that
we are interested in performance metrics that are
unique to the unicast application in DTN. We have
seen that there exists a tradeoffs between the deliv-
ery delay and resource consumptions in terms of
the number of transmissions made for a packet
and buffer occupancy. Using ODE models, we have
studied the performance of various epidemic style
routing, and explored the tradeoffs they achieve.

The work most closely related to ours is [8],
where an ODE model is applied to study delay
under epidemic routing, and Markov chain model
is used to study the storage requirement under dif-
ferent recovery schemes. While both our work and
[8] study the delay, storage requirement, and trans-
mission numbers of epidemic routing, our work
goes beyond this single scheme to study schemes
such as 2-hop forwarding, probabilistic forwarding,
limited-time forwarding, global timeout scheme,
and epidemic routing in the buffer-constrained sce-
nario. In addition, our analysis leads to new
closed-form expressions and asymptotic results,
when the number of nodes increases, for a number
of schemes. Furthermore, we study epidemic rout-
ing under buffer-constrained scenario using ODE
models coupled with Markov models to compare
different buffer management strategies. We also note
that the approach in [8] is a hybrid approach and
requires obtaining some model parameters, such as
the number of nodes infected at the time of delivery,
from simulations. We derive all metrics as part of
the model itself. Last, because our focus is on the
use of ODE models, we provide insight into when
they do or do not work and why, and show how
moment closure techniques could be employed to
improve the model predictions.

Another closely related work is [5]. Based on the
result of Poisson meeting process, the authors
modeled 2-hop forwarding and epidemic routing
using Markov chain models, and derived the aver-
age delay and the number of copies generated at
the time of delivery for these two schemes. Using
ODE models, we have more easily derived similar
results. Ref. [9] later extended this work to consider
a variant of 2-hop scheme with exponential timers at
each node with and a limit on the maximum number
of copies. Through Markovian analysis, the author
derived close-form formulas and numerical solu-
tions for delivery delay, number of copies transmit-
ted for these two schemes respectively. Given the
difficulty in deriving asymptotic formulas from
Markovian analysis, ODE models were employed
to derive asymptotic formulas for moments of deliv-
ery delay, and copies made at delivery time for these
two schemes.

8. Summary

In this paper, we proposed and investigated a
unified framework based on ODEs to study the per-
formance of various forwarding and recovery
schemes. We derived ODE models as limiting pro-
cesses of Markovian models under a natural scaling
as the number of nodes increases, and employed the
ODE models to obtain a rich set of close-form for-
mulas regarding the packet-delivery delay, number
of copies sent, and buffer occupancy under various
schemes. We validated the models through simula-
tions, and observed a good match between the
model prediction and simulation results. We used
the ODE models to explore performance tradeoffs
achieved by various schemes, and obtain insights
into the different schemes. We further considered
the buffer-constrained case, and showed that with
appropriate buffer management schemes, a much
smaller buffer can be used with negligible effect on
delivery performance.
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7 There is no such a need for the previous schemes because only
a destination can recover an infected node. Hence even if the
destination has not received the packet, the destination receives it
when it meets the infected node.

8 Different assumptions can be made, for example a destination
could receive the packet from another destination, or a destina-
tion could receive the antipacket from a recovered node and
propagate it without having received the packet. The latter case is
meaningful when we deal with an anycast communication (the
packet has to reach at least one of the destinations) or if we can
rely on the fact all the destinations will receive a copy of the
packet from the destination that started the recovery process.
These different assumptions lead to minor differences in the final
equations.
Appendix A. Derivation of ODEs that consider

recovery processes

In this section, we derive ODE models to include
the recovery process from Markov Chain models. In
order to derive the limiting equation the number of
destinations, nD, need to scale with the number of
nodes N. We first consider IMMUNE scheme. Let
nR(t) denote the number of recovered nodes at time
t, then the state can be denoted as (nI(t), nR(t)). We
have the following transition rates:

rNððnIðtÞ; nRðtÞÞ; ðnIðtÞ þ 1; nRðtÞÞÞ
¼ bnIðtÞðN � nIðtÞ � nRðtÞÞ;

rNððnIðtÞ; nRðtÞÞ; ðnIðtÞ � 1; nRðtÞ þ 1ÞÞ
¼ bnIðtÞnD:

The transition rates can be written in a ‘‘density
dependent’’ form, given that the number of destina-
tions nD scales in a manner similar to the scaling
of the number of initially infected nodes, i.e.,
limN!1nD/N = d. Then by Theorem 3.1 in [16],
we get that, as N increases, the fraction of infected
nodes (nI/N) and recovered nodes (nR/N) converge
asymptotically to the solution of the following
equations:

i0ðtÞ ¼ kiðtÞð1� iðtÞ � rðtÞÞ � kiðtÞd for t P 0;

r0ðtÞ ¼ kiðtÞd for t P 0;

where d = nD/N, and the initial conditions are
i(0) = limN!1nI(0)/N, r(0) = 0.

The number of infected and recovered nodes then
converges to I(t) = Ni(t), R(t) = Nr(t) in the sense of
Footnote 1. The following equation can be derived
for I(t), R(t) from the previous ODEs:

I 0ðtÞ ¼ bIðN � I � RÞ � bInD; ðA:1Þ
R0ðtÞ ¼ bInD ðA:2Þ
with initial condition I(0) = Ni(0), R(0) = 0. We
consider I(0) = 1, R(0) = 0, nD = 1.

ODE models for IMMUNE_TX and VACCINE
scheme can be similarly derived. For IMMU-
NE_TX the transition rates are (omitting the depen-
dence from time, t):

rNððnI ; nRÞ; ðnI þ 1; nRÞÞ ¼ bnIðN � nI � nRÞ;
rNððnI ; nRÞ; ðnI � 1; nR þ 1ÞÞ ¼ bnIðnR þ nDÞ:

The limiting equations are

i0ðtÞ ¼ kiðtÞð1� iðtÞ � rðtÞÞ � kiðtÞðrðtÞ þ dÞ
for t P 0;

r0ðtÞ ¼ kiðtÞðrðtÞ þ dÞ for t P 0:

The following equations can be immediately derived:

I 0ðtÞ ¼ bIðN � I � RÞ � bIð1þ RÞ; ðA:3Þ
R0ðtÞ ¼ bIð1þ RÞ: ðA:4Þ

For VACCINE we need to specify how many desti-
nation nodes have received the packet, let nDR

denote this number.7 We assume that all the desti-
nations have to receive the packets from an
infected node.8 The transition rates are: rN((nI,nR,
nDR), (nI + 1,nR,nDR)) = bnI(N � nI � nR),rN((nI,nR,
nDR), (nI � 1,nR + 1,nDR)) = bnI(nR + nDR) and
rN((nI,nR,nDR), (nI � 1,nR + 1,nDR + 1)) = bnI(nD �
nDR) and rN((nI,nR,nDR), (nI,nR + 1,nDR)) = b(N �
nI � nR)(nR + nDR). The limiting equations are as

follows, where dr(t) = limN!1(nDR/N):

i0ðtÞ ¼ kiðtÞð1� iðtÞ� rðtÞÞ� kiðtÞðrðtÞþ dÞ
for t P 0;

r0ðtÞ ¼ kiðtÞðrðtÞþ dÞþ kð1� iðtÞ� rðtÞÞðrðtÞþ drðtÞÞ
for t P 0;

d 0rðtÞ ¼ kiðtÞðd � drðtÞÞ for t P 0:
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If we consider the average populations (Ni(t),Nr(t)
and Ndr(t)), and assume nD = 1, we observe that
Ndr(t) satisfies the same ODE as P(t), and derive
the following equations:

I 0ðtÞ¼bIðtÞðN � IðtÞ�RðtÞÞ�bIðtÞðRðtÞþ1Þ;
ðA:5Þ

R0ðtÞ¼bIðtÞð1þRðtÞÞþbðN � IðtÞ�RðtÞÞðRðtÞþPðtÞÞ;
ðA:6Þ

P 0ðtÞ¼bIðtÞð1�PðtÞÞ: ðA:7Þ

Let C(t) be the number of nodes that are ever in-
fected by the packet, then we have

C0ðtÞ ¼ bIðtÞðN � IðtÞ � RðtÞÞ: ðA:8Þ

These ODE models allow us to evaluate the number
of times a packet is copied during its lifetime
(excluding the copy to the destination), G = C(1),
and the average buffer occupancy, Q ¼ k

R1
0

IðtÞdt.
(i+1)

s,i
s,i+1 s,i–1

s+1,i–1

s–1,i+1

si

(s+1)(i–1)
iβ

γ

γ

β

Fig. C.1. Markov chain for epidemic routing.
Appendix B. Derivation of the total number of copies

For IMMUNE scheme, Eqs. (A.1) and (A.2)
model the infection and recovery process. Note that
as R(t) is a strictly increasing function of t, I(R) is
well defined. Dividing Eq. (A.1) over (A.2) yields
(we assume nD = 1):

dI
dR
¼ N � I � R� 1:

The solution to this ODE with initial condition
I(0) = 1 is

IðRÞ ¼ ð�N þ 1Þe�R � Rþ N :

As limt!1I(t) = 0, we can solve I(R) = 0 for R to
find limt!1R(t). For N large enough (N > 10), the
solution gives limt!1R(t) � N. Since I(t) + R(t) �
(I(0) + R(0)) = I(t) + R(t) � 1 is the number of
times a packet is copied in the system by time t, we
have E[Gep(N)] = limt!1I(t) + R(t) � 1 � N � 1.

Similarly, for IMMUNE_TX scheme, from Eqs.
(A.3) and (A.4), we can solve I(R) and get:

IðRÞ ¼ �R2 þ ðN � 1ÞRþ 1

Rþ 1
:

As limt!1I(t) = 0, we find limt!1R(t) by solving
I(R) = 0 for R. I(R) = 0 has two roots
ðN � 1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � 2N þ 5

p
Þ=2. Discarding the nega-

tive root, we have limt!1RðtÞ ¼ ðN � 1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � 2N þ 5

p
Þ=2. Therefore, for IMMUNE_TX

scheme, we found
E½GepðNÞ� ¼ lim
t!1
ðIðtÞ þ RðtÞ � 1Þ

¼ N � 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � 2N þ 5

p
2

:

Appendix C. Derivation of ODEs from Markov chain
through moment closure techniques

In this section, we show how the ODE model can
be derived from Markov Chain model by ignoring
variability and how variability can be taken into
account using differential equations involving higher
moments.

We consider the generic epidemic routing under
IMMUNE recovery with a pair-wise infection rate
of c, and per-node recovery rate of b. Under the
basic epidemic routing, we have c = b; for probabi-
listic forwarding, we have c = pb. A bivariate Mar-
kov chain as illustrated in Fig. C.1 can be used to
model the infection and IMMUNE recovery pro-
cess, with state (S(t), I(t)) denotes a state where there
are S(t) susceptible nodes, and I(t) infected nodes at
time t, given that S(0) = N � 1, I(0) = 1.

Define the state probabilities: Ps,i(t) = Pr{S(t) =
s, I(t) = ijS(0) = N � 1, I(0) = 1}. The Kolmogorov
forward equation for the process is

dP s;iðtÞ
dt

¼ �P s;iðtÞðbiþ csiÞ þ P s;iþ1ðtÞbðiþ 1Þ

� P sþ1;i�1ðtÞcðsþ 1Þði� 1Þ:

Let Mðh1; h2; tÞ :¼ E½eh1sþh2i� be the moment generat-

ing function. Multiplying the above equation with
eh1sþh2i, and summing over all possible s, i, we get:

oM
ot
¼ bðe�h2 � 1Þ oM

oh2

þ cðeh2�h1 � 1Þ o2M
oh1oh2

: ðC:1Þ

We define the cumulant generating function,
K(h1,h2, t) :¼ logM(h1,h2, t), and observe that the
following equations hold:
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oK
ot
¼ 1

M
oM
ot
;

oK
oh1

¼ 1

M
oM
oh1

;

o2K
oh1oh2

¼ � oK
oh1

oK
oh2

þ 1

M
o2M

oh1oh2

:

Substitute these equations into Eq. (C.1), we get:

oK
ot
¼ bðeh

2 � 1Þ oK
oh2

þ cðeh2�h1 � 1Þ

� o2K
oh1oh2

þ oK
oh1

oK
oh2

� �
: ðC:2Þ

By taking partial derivatives of h1 and h2 respec-
tively on Eq. (C.2) and setting h1 = h2 = 0, we can
get the following ODE system:

dS
dt
¼ �cðIS þ CISÞ;

dI
dt
¼ �bI þ cðIS þ CISÞ;

where SðtÞ¼E½SðtÞ�; IðtÞ¼E½IðtÞ�;CISðtÞ¼ CovðSðtÞ;
IðtÞÞ.

If we ignore covariance of I(t) and S(t), and set
CIS = 0, we get:

dS
dt
¼ �cIS;

dI
dt
¼ �bI þ cIS:

This is exactly the ODEs we have derived as limiting
process of Markov Chain model.

If we continue this process, we could derive
ODEs for second-order moments by taking second
order partial derivatives of h1 and h2 respectively
on Eq. (C.2) and setting h1 = h2 = 0:
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Fig. C.2. Comparison of different moment equations for th
dV S

dt
¼ cðIS þ CISÞ � 2cðT SSI þ V SI þ SCISÞ;

dV I

dt
¼ bI � 2bV I þ cðCIS þ ISÞ

þ 2cðT SII þ CISI þ SV IÞ;
dCIS

dt
¼ �bCIS � cðCIS þ ISÞ � cT SII

� cCISI � cSV I þ cT SSI þ cV SI þ cSCIS ;

where Vs(t) = Var(S(t)), VI(t) = Var(I(t)), and TSII,
TSSI are the third central moments: TSII =
E[(S � ES)(I � EI)2], TSSI = E[(S � ES)2(I � EI)].

One could keep on this procedure to derive
ODEs for the third and higher moments, but even-
tually a moment closure technique is needed to trun-
cate the equations at certain order. We experiment
with three different methods [12,22,18].

• MVN (multi-variate normal) method: setting
third central moments to zero. This is equivalent
to assuming a multi-variate normal distribution
of the state variables (S(t), I(t)).

• Lognormal method: if we assume a lognormal
distribution for the state variables, then the third
moments can be expressed in terms of the lower
moments.

• Third-order moment: truncate the equations by
setting fourth-order moments to zero.

In order to compare the performance of these dif-
ferent methods, we simulate probabilistic forward-
ing, varying p in the range between 0.001 and 1.0,
with N = 100, and compare the model predictions
with the simulation results.

For the basic epidemic routing, i.e., p = 1.0,
c = b case, Fig. C.2 plots the average infected node
number, the covariance of infected node number of
susceptible node, and the CDF of delay, comparing
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simulation results with the prediction of different
moment equations. We observe that third-order
ODEs gives similar result as first-order ODEs, with
slight improved match with simulation results. Like
first and third order ODEs, lognormal equations
under estimates the covariance, and therefore over
predicts the infection spreading process, and under
predicts the delivery delay. On the other hand,
MVN method over estimates the covariance, and
under estimates the spread of the infection (as
Fig. C.2a shows). For this case, MVN method per-
forms best in prediction of delivery delay as shown
also in the Fig. 1 in Section 2.

However, MVN method has a drawback. For P

in the range [0.01,0.3], the MVN ODEs have no sta-
ble equilibrium, i.e., the solution diverges. Ref. [18]
observed this drawback of MVN method (under a
different model), and attributed it to the large vari-
ability under the scenario considered.

Appendix D. Delay asymptotic results

Here we are going to derive the different bounds
and asymptotic values we presented in the paper.
For each of the following forwarding schemes,
closed-form expressions can be derived for the num-
ber of infected nodes I(t) and the cumulative distri-
bution of delay P(t) = Pr(Td < t) = 1 � Q(t). The
expected delay can be evaluated as E½T d � ¼R1

0 QðtÞdt, so we are going to show how this integral
can be approximated for the different schemes.

• 2-hop forwarding (Section 3.1.1)The expected
delay is equal to

E½T d � ¼
1

b

Z 1

0

e�teðN�1Þð1�t�e�tÞ dt;

eðN�1Þð1�t�e�tÞ has a single maximum for t = 0,
hence according to the saddle point approxima-
tion when N!1 we can consider:

e�teðN�1Þð1�t�e�tÞ � e�0e�ðN�1Þt2=2;

hence

E½T d � �
1

b

Z 1

0

e�ðN�1Þt2=2 dt ¼ 1

b

ffiffiffi
p
2

r
1ffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p :

• Probabilistic routing (Section 3.1.3). In this case

QðtÞ ¼ N
eNbpt þ N � 1

� �1
p

:

This expression can be easily bounded:

N
eNbt þ N � 1

6 QðtÞ 6 N
eNbpt þ N � 1

:

Note that these bounds correspond to the com-
parison of the probabilistic forwarding with epi-
demic routing with inter-meeting rates of b and
bp respectively: probabilistic forwarding is slower
than the first one, but faster than the second
one.If we integrate the previous inequality, we
get:

lnðNÞ
bðN � 1Þ 6 E½T d � 6

lnðNÞ
bpðN � 1Þ :

• Limited-time scheme with reinfection (Section
3.1.3). In this case:

QðtÞ ¼ ða2 � a1Þe�a1bt

ða2 � 1Þ þ ð1� a1Þeða2�a1Þbt
;

where a2 and a1 are respectively the positive
and the negative solution of the equation
bI(N � I) � l(I � 1) = 0 (to be solved for I), ob-
tained by imposing dI

dt ¼ 0.

We consider three different asymptotic values: for
N!1, for l!1 and for N ¼ l

b!1.
As regards the first bound, we proceeded in the

following way: we considered a function Qa,N(t) > 0
which approximates QN(t) (we have stressed the
dependence from N), and for which we can closely
evaluate

R1
0

Qa;NðtÞdt. This is an asymptotic value
for the expected delay if:

lim
N!1

R1
0

QN ðtÞdt �
R1

0
Qa;N ðtÞdtR1

0
Qa;N ðtÞdt

! 0:

In order to prove it, we proved that
QN ðtÞ�Qa;N ðtÞ

Qa;N ðtÞ
con-

verges uniformly to zero in R+ as N diverges:

QN ðtÞ � Qa;N ðtÞ
Qa;N ðtÞ

!u
N ;1

0:

In fact in this case "� > 0, $n� 2 N such that
"t 2 R+ and "N > n�

jQNðtÞ � Qa;N ðtÞj
jQa;N ðtÞj

< �;

henceR1
0

QN ðtÞ � Qa;NðtÞdt
�� ��R1

0 Qa;N ðtÞ
�� �� 6 �:
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The asymptotical behavior of a2 and a1 as N!1
(limN!1a2 = +1, limN!1a1 = 0) suggests to
consider:

Qa;N ðtÞ ¼
a2 � a1

ða2 � 1Þ þ ð1� a1Þea2bt
;

which can be easily integrated.

QN ðtÞ � Qa;NðtÞ
Qa;NðtÞ

����
���� ¼ ð1� ea1btÞ

ea1bt þ ð1�a1Þ
a2�1

ea2bt
6
ð1� ea1btÞ
ð1�a1Þ
a2�1

ea2bt
:

We can easily evaluate the maximum of the right
expression, and we get:

QðtÞN � Qa;NðtÞ
Qa;NðtÞ

����
���� 6 �a1ða2 � 1Þ
ð1� a1Þða2 � a1Þ

a2

a2 � a1

� ��a2
a1

:

The maximum converges to 0 when N diverges,
hence the convergence is uniform.

The asymptotic value isZ 1

0

Qa;N ðtÞdt ¼ 1=b
a2 � a1

ða2 � 1Þa2

ln
a2 � a1

1� a1

� �
;

which behaves asymptotically as

1

b

lnðN � l
bÞ

N � l
b

:

In the same way we have found the second bound as
l!1. In this case liml!1a2 = 1, liml!1a1 =
�1, and we consider

Qa;lðtÞ ¼ e�a2bt:

QNðtÞ � Qa;N ðtÞ
Qa;N ðtÞ

����
���� ¼ 1

a2�a1

ða2�1Þð1�e�ða2�a1ÞbtÞ � 1
:

The supremum is achieved for t!1 and is equal
to

a2 � 1

1� a1

;

which converges to 0 as l diverges.
The asymptotic value isZ 1

0

Qa;lðtÞdt ¼ 1

ba2

�
l!1

l� Nb
bl

:

Finally, as regards the third bound, a closed form
can be found for E[Td], considering N = l/b:

E½T d � ¼
2 arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1
p

þ1ffiffiffiffiffiffiffi
N�1
p

�1

q
b
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

and

E½T d � �
N!1

p

2b
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p :
Appendix E. Number of copies

In this section we show how the results about the
average number of copies occurred until the delivery
(Cd) can be derived.

First note that for all the considered schemes,
except those based on timers, the number of copies
(excluding the copy to the destination) coincides
with the average number of infected node in the sys-
tem when the packet is delivered minus one. Hence

Cd ¼
Z 1

0

IðtÞP 0ðtÞdt � 1;

where I(t) is the number of infected nodes at time
t, given that the packet has not been delivered at
time t.

By replacing P 0(t) and integrating by parts, we
have:
Z 1

0

IðtÞP 0ðtÞdt ¼ b
Z 1

0

I2ðtÞQðtÞdt

¼ b
Z 1

0

I2ðtÞQðtÞ
�bIðtÞQðtÞ dðQðtÞÞ

¼
Z 1

0

I 0ðtÞQðtÞdt þ 1:

By replacing I 0(t) according to the equation of
the specific schemes and considering thatR1

0
bIðtÞQðtÞdt ¼ Pð1Þ � P ð0Þ ¼ 1, we can get the

following results, respectively for epidemic routing,
2-hop and probabilistic routing.

Cep ¼
N � 1

2
;

C2hop ¼ bNE½T d � � 1 �
N!1

ffiffiffi
p
2

r ffiffiffiffi
N
p

;

Cprob ¼
pðN � 1Þ

1þ p
:
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