
A distributed minimum-distortion routing algorithm
with in-network data processing

Ramin Khalili
Dept. of Computer Science

University of Massachusetts, Amherst, MA
Email: ramin@cs.umass.edu

Jim Kurose
Dept. of Computer Science

University of Massachusetts, Amherst, MA
Email: kurose@cs.umass.edu

Abstract—In many wired and wireless networks, nodes process
input traffic to satisfy a network constraint (e.g., a capacity
constraint) and to increase the utility of data in the output flows
given these constraints. In this paper we focus on the special case
in which data processing is applied to satisfy capacity constraints.
This occurs when the sum of the rate of the input traffic at a
node exceeds the sum of the capacity of its output links, or
in a more general case, when the sum of the input rates is
larger than any cut capacity in the network. In this case, nodes
process data to decrease the output flow rate. This decrease from
input rate to output rate distorts the transmitted data, which we
characterize by a distortion metric. We show that the distortion
cost of distributively processing input traffic in a network can
be written as the sum of the distortion at individual nodes.. We
present a distributed algorithm for a data-gathering network with
many sources and a data sink that routes traffic and performs
in-network data processing to minimize the distortion cost. In
this algorithm, each node determines its routing table based on
gradient information from neighboring nodes.

I. INTRODUCTION

Increasingly, distributed sensing systems are being devel-
oped and deployed that monitor/measure an environment, and
report these observations to a central site. Examples include
in-situ monitoring of natural habitats [1]–[3], collaborative
adaptive sensing of the atmosphere [4], multi-camera video
surveillance [5], and measurement/monitoring of engineered
systems such as transportation systems [6], and data networks
[7]. In many of these systems, a potentially large set of
measurements is routed to a central collector. In contrast
to traditional networks whose purpose is to forward stored
data to the data sink, the purpose of a sensor network is to
provide users access to information of interest in the data. For
example, in a temperature sensor network, the central sink
node might only need receive the local average temperature
collected by temperature sensors. In this case, communicating
all the stored measurements to the central collector is highly
inefficient. Moreover, a large sensor network may be severely
constrained in energy, memory, or bandwidth. Therefore, in
many wired and wireless sensor networks, nodes process input
traffic (rather than just forwarding this traffic) to satisfy a set of
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network requirements (such as capacity or energy constraints)
or to increase the utility of the output flows. We refer to this
alternative solution as in-network data processing, where the
entire network is performing application-specific distributed
data processing.

In this paper we focus on the special case in which data
processing is performed to satisfy capacity constraints. This
occurs when the sum of the input traffic rates at a node is
larger than the sum of the capacity of its output links, or
in a more general case, when the sum of the input rates is
larger than any cut capacity in the network. In this case, nodes
must process data to decrease the output flow rate, where the
effect of processing is to reduce the rate of input flows to
a lower aggregate outgoing rate. However, the decrease from
input rate to output rate distorts the transmitted data, which we
characterize by a distortion metric. Our definition of distortion
is quite general and is not restricted to any specific kind of
data processing mechanism. Therefore, our work differs from
[8], [9], where in [8], [9] in-network processing is limited
to data compression with known correlation structure among
input flows.

We first show that the distortion cost of distributively
processing input traffic flows in a network can be written
as the sum of the distortion increments at individual nodes.
This is done by introducing per-node marginal distortion costs
that can be calculated locally at the individual nodes. We
then propose a gradient-based distributed algorithm for a data-
gathering network with many sources and a data sink that
optimally routes traffic and performs in-network data process-
ing to minimize the distortion cost. This algorithm requires
each node to decide its own routing table based on update
information from neighboring nodes. Our work thus differs
from [10] in which the goal is to design a joint routing resource
allocation mechanism to maximize an overall system utility
in the network. Our work is also different from [11]–[15]
that establish information-theoretic bounds on the maximum
rate at which functions of measurement data can be computed
and communicated to the data sink nodes. Random gossiping
algorithms [16], [17] are based on information propagation
through randomly selected neighbors to compute aggregate
functions in the network, where only a restricted class of
processing functions are considered, and thus also differ from
our work.
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Fig. 1. The node flow tm is the sum of the input traffic and traffics routed
to i from other nodes.

The rest of this paper is structured as follows. In the follow-
ing section we describe the network setting and assumptions
for our study. In section II-A, we define the distortion cost
metric for simple point-to-point communication. We then show
how the per-path distortion cost can be calculated as the
sum of the per-node marginal distortion at individual nodes
on a path. This is the subject of section II-B. In section
II-C, we generalize our definition of distortion cost to a
network-wide scenario and present a distributed formulation
for our optimization problem. In section III-A we generalize
the necessary and sufficient conditions in [18] for an optimal
set of routes to minimize the network-wide distortion cost. In
section III-B, we propose a distributed algorithm to solve this
optimization problem by generalizing Gallager’s results [18].
Section IV reviews the related work. We conclude this paper
in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We model the network with a directed graph G = (V,L)
where V is the set of nodes and L is the set of directed links in
the network. Let n denote the single sink node in the network
and 1, ..., n− 1 denote non-sink nodes in V . In this paper we
assume a single type of data and a single sink, but this can
be generalized [19]. We denote by (m, j) ∈ L a link from m
to j. We consider that if link (m, j) exists, link (j,m) exists
too.

Let rm ≥ 0 be the traffic rate, in symbols/sec, entering the
network at node m. Now let tm be the total incoming traffic
rate at node m destined for n (see Figure 1). tm includes both
rm and the traffic from other nodes routed through m to the
data sink.

Let φmj ,
∑

m φmj = 1, be the fraction of traffic tm decided
to be routed over (m, j) to downstream node j. We consider
that node m processes this flow before transmitting it over
link (m, j), where a symbol unit of this flow produces βmj

symbol units of output after processing. We shall refer to the
parameter βmj , 0 < βmj ≤ 1, as a shrinkage factor, which
represents the shrinkage effect in data processing. The value
of βmj are given. If φmjtm is the fraction of node flow tm to
be routed over link (m, j), then the output flow would have
a rate of rmj = φmjtmβmj . As tm at node m is the sum of

the input traffic and the traffic routed to m from other nodes
in the network, then

tm = rm +
∑

i∈V −{m}
rim = rm +

∑
i∈V −{m}

φimtiβim (1)

for all i ∈ V . This equation expresses the balance of flow at
each node accounting for shrinkage factors. Note that rmj ≤
Cmj , where Cmj is the capacity of link (m, j).

Let us denote the set of inputs rates {rm} as r, the set
of routing variables {φmj} as φ, the set of shrinkage factors
{βmj} as β, and the set of total nodes flow rates {tm} as t. We
are interested in a distributed algorithm in which each node m
in the network decides its own routing variables φmj for each
j. For this purpose we define φ in the same manner as [18] to
ensure that the set of equations (1) have unique solutions for
t given r, φ, and β.

Definition 1 A routing variable set φ for network G = (V,L)
is a set of non-negative numbers φmj , m, j ∈ V , satisfying
the following conditions :

• φmj = 0 if j = n, or (m, j) /∈ L,
•
∑

j φmj = 1, for all m
• for each 1 ≤ m ≤ n − 1 there is a routing path from m

to n, i.e., there is a sequence of nodes m, j, o..., l, n such
that φmj > 0, φjo > 0, ..., φln > 0.

Before going to the details of the routing algorithm, let us
consider the in-network computation as represented by β.

A. Distortion Cost

In this paper we focus in the case that processing reduces
the rate of input flows to a node to lower aggregate outgoing
rate. For example, let X (with rate ri) be the input flow at
node i and assume that this node communicates directly to
the data sink n over a link with capacity Cin where ri > Cin.
Node i generates output flow Y from X using the processing
function of g(.) where Y = g(X). A symbol unit of flow X
produces βin(< 1) symbol units of Y after processing and
thus the output traffic rate is rin = riβin, in symbols/sec,
where riβin < Cin (see Figure 2(a)).

Let us now consider the distortion caused by shrinkage in
more detail. The data sink’s estimate, X̂ , of the original X
is some function, h(.), of the received data Y , i.e., X̂ =
h(Y ) = h(g(X)), with an average distortion of Din(βin) =

d[X,h(g(X))] where d(.) is a distortion measure and the
expectation is with respect to the probability distribution on
X [20]. Din(βin) is a measure of the cost of representing
X by X̂ , i.e., the distortion cost of processing a symbol unit
of input data to βin symbol units of output data Y at node
i. For our purpose, it is immaterial what function Din(.) is,
although we shall make the reasonable assumption that Din is
decreasing, positive, and convex ∪ in β.

B. Distortion along a path

Let us now consider the simple scenario in which ri crosses
a set of nodes in path p = (i, i+1, ..., n−1, n) and let rj = 0
for j �= i. Let {βi(i+1), ..., β(n−1)n} be shrinkage factors over
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Fig. 2. Per-node and per-path data processing

this path. The distortion cost of distributively processing ri

over this path is DT = Dp(ri

∏n−1
j=i βj(j+1)), where Dp(.)

reflects the distortion effects of processing at nodes along this
path. Now let j ∈ p be a downstream node of i as depicted
in Figure 2(b). We define β

′
(j−1)j =

∏j−1
h=i βh(h+1) as the the

shrinkage of a symbol unit of tj relative to a symbol unit of ri.
Now define the per-node marginal distortion cost of processing
tj from the shrinkage level β

′
(j−1)j to the new shrinkage level

β
′
j(j+1) as

∆j(j+1) = Dj(j+1)(β
′
j(j+1)) −D(j−1)j(β

′
(j−1)j)

where D(j−1)j(β
′
(j−1)j) = 0, for j = i,. The sum of this per-

node distortions over all nodes in p is equal to the distortion
cost of distributively processing ri over this path, where

DT =
n∑

j=i

∆j(j+1) = D(n−1)n(β
′
(n−1)n),

and D(n−1)n(.) is what we defined as Dp(.).
In section III-A we will show that only nodes that are

connected directly to the receiver (for the example in Figure
2, node n − 1) need estimate their own distortion measure
functions (Dp(.)) and the marginal per-node distortion costs
of the other nodes can be calculated based on the update
information received from their neighbors.

C. Network-wide distortion

Now we consider a general network setting in which dat
enter at different points into the network. We define node j to
be a downstream node of m if there is a routing path from m to
data sink n passing through j. Node i is defined as an upstream
node of m if m is downstream from i. In a general setting,
the rate of traffic at m is expressed by equation (1) where rim

is the input flow received from upstream node i. These inputs,
arriving from different upstream nodes, have different rate and
different shrinkage levels as they may have crossed different
paths in the network. m combines these flows together where
the resulting has a rate of tm = rm +

∑
i∈L−{i} rim which is

equal to the sum of the input rates. Let β
′
im be the shrinkage

level of upstream flow rim. We define

β
′
m =

(
rm +

∑
i∈L−{m} rim

rm +
∑

i∈L−{m}
rim

β
′
im

)
, (2)

as the shrinkage level of tm relative to the fraction of flow
r = {rm} (input traffic before any processing) routed through
m to the destination.

Definition 2 Let β
′
im be the shrinkage level of rim arriving

at node m �= n. Now let rmj = φmjtmβmj be the flow
routed over output link (m, j). The shrinkage level of rmj is
β

′
mj = βmjβ

′
m and the marginal distortion of this procedure

(processing a fraction φmj of tm to rmj) is defined as

∆mj = Dmj(β
′
mj) − φmj

∑
i

Dim(β
′
im). (3)

Let N be the set of nodes that have a direct link to data
sink n. We define the distortion metric DT as

DT =
∑

m∈N
Dmn(β

′
mn) (4)

Note that if link flow rates rmn, m ∈ N , are equivalent, then
DT is actually the average distortion cost of distributively
processing r in the network. This is the case in a network
with links with the same capacity limit where the flow rates
in links connected to the sink node are close to the capacity
of those links.

Theorem 1 DT can be written as the sum of the marginal
distortion costs over nodes in the network, i.e. :

DT =
∑
m,j

∆mj . (5)

Proof: See the technical report [19].
In the next section we propose a distributed algorithm to

minimize DT in the network.

III. DISTRIBUTED MINIMUM-DISTORTION ALGORITHM

In this section, we present a distributed algorithm for each
node to locally adjust routing variables to converge to the
optimal (in the sense of minimizing DT in equation (4)) set of
routes by generalizing Gallager’s result [18]. We first give the
necessary and sufficient conditions for minimum distortion set
of routes.

A. Necessary and sufficient conditions for minimum distortion

We first derive the partial derivatives of DT with respect
to input r and the routing variable φ. Due to space limit, we
summarize here; see [19] for more details.

Assume a small increment of ε in input rm. This increment
will cause a local increment of Rmj in the distortion cost of
processing traffic φmjtm at node m, where j is a downstream
node of m. It will also cause a change in the shrinkage level
of traffic tj at node j. Summing over all these changes and
over all adjacent nodes j, we have :

∂DT

∂rm
=
∑

j

φmj

[
Rmj +

∂DT

∂rj

]
(6)
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where

Rmj =




−β
′
j(1−β

′
mj)

tj

∂DT

∂β
′
j

j �= n

βmn(1−β
′
m)

φmn

dDmn(β
′
mn)

dβ′
mn

j = n
. (7)

Next we consider ∂DT

∂φmj
. An ε increment in φmj causes a

local increment of Hmj in the distortion cost of processing
traffic φmjtm at m, as well as a change in the shrinkage level
of traffic tj at node j, where

∂DT

∂φmj
=

tm
β′

m

[
Hmj +

∂DT

∂rj

]
(8)

for

Hmj =




−β
′
j(1−β

′
mj)

tj

∂DT

∂β
′
j

j �= n

0 j = n
. (9)

Finally we consider the marginal term ∂DT

∂β′
m

. An ε increment

in β
′
m will cause a change of

∂DT

∂β′
m

=
∑

j

φmjβmj

[
Amj +

β
′
jtm

β′
mtj

∂DT

∂dβ
′
j

]
(10)

in DT , where

Amj =




0 j �= n

1
φmn

dDmn(β
′
mn)

dβ′
mn

j = n
. (11)

Equation (6), (8), and (10) are the set of equations that
describe our system. In the following theorem we show the
existence and uniqueness of ∂DT

∂rm
and ∂DT

∂φmj
given by equations

(6) and (8).

Theorem 2 Let a network G = (V,L) have input traffic
set r and routing variable set φ, and let Rmj and Hmj be
continuous in β

′
mj for each m and j. Then the set of equations

(6) has a unique solution for ∂DT

∂rm
. Moreover, ∂DT

∂rm
and ∂DT

∂φmj

for (m, j) ∈ L are continuous in r and φ.

Proof: See the technical report [19].
Using Lagrange multipliers for the constraint

∑
m φmj = 1,

where φmj ≥ 0, the necessary conditions with respect to φ and
for all (m, j) ∈ L are

∂DT

∂φmj

{
= λm φmj > 0
≥ λm φmj = 0.

(12)

However, as shown by [18], (12) is not a sufficient condition
to minimize DT . Next we propose a sufficient condition for
the optimization problem.

Theorem 3 Assume that for each (m, j) ∈ L, Dmj(βmj) is
convex and continuously differentiable for 0 < βmj ≤ 1. Let
Ψ be the set of φ for which the shrinkage levels are larger
than zero. Then (12) is necessary condition for φ to minimize
DT over Ψ and the sufficient condition is

∂DT

∂rm
≤ ∂DT

∂rj
+ Rmj . (13)

Proof: See the technical report [19].

B. A distributed algorithm for minimum distortion

Based on the sufficient condition given by Theorem 3,
we now propose a gradient-based routing algorithm by gen-
eralizing [18]. Each node m must incrementally decrease
those routing variables for which the marginal distortion cost
∂DT

∂rj
+Rmj is large and increase those for which this marginal

cost is small. The algorithm has two parts: a protocol between
neighboring nodes in network to calculate the marginal distor-
tion costs, and an algorithm for modifying the routing variables
φ. We first discuss the protocol part.

Each node m can calculate the average shrinkage level (β
′
m)

of its own traffic knowing the shrinkage level of each input
flow using (2). Thus, if m has a direct link (m, n) to the

destination, with an appropriate formula for dDmn(β
′
mn)

dβ′
mn

, it can

calculate the marginal costs of dDmn(β
′
mn)

dβ′
mn

.

Let us now consider how node m can calculate ∂DT

∂rj
and

∂DT

∂β
′
j

. As in [18] we assume that the routing variable φ is loop

free, i.e., there is no m and j (m �= j) such that j is both
upstream and downstream for m. The updating protocol is
now as follows : each node m waits until it has received ∂DT

∂rj

and ∂DT

∂β
′
j

from downstream neighbor nodes j �= n. Node m

can then calculates ∂DT

∂rm
from (6) and (7) with the convention

that ∂DT

∂rn
= 0. ∂DT

∂β′
m

can be calculated using (10) and (11)

with the convention that ∂DT

∂β′
n

= 0. m then broadcasts these
values to all of its neighbors except the destination which has
no need of the information. It easy to show that this procedure
is loop-free if and only if φ is loop-free.

Now we describe algorithm Γ to modifying the routing
variables. To avoid the deadlocks and similar to [18], our
algorithm requires a small amount of additional information
to maintain the loop-free property : each node m maintain
a set Bm of blocked nodes j for which φmj = 0 and the
algorithm is not permitted to increase φmj from zero. See
[19] for the definition of Bm and how to use it to maintain
loop free property.

Following [18], on each iteration, the algorithm Γ maps the
current routing variable φ into a new set of variables φ(1) =
Γ(φ) using the following mapping structure. For j ∈ Bm,
φmj(1) = 0 and δmj = 0. For j /∈ Bm, we define

δmj = min[φmj , ηamj/tm] (14)

where

amj =
∂DT

∂rj
+ Rmj − min

l/∈Bm

[
∂DT

∂rl
+ Rml

]
. (15)

η is a scale parameter of Γ and will be discussed shortly. Note
that if we multiply both sides of (13) by φmj and sum over j,
then we see from (6) that (13) must be satisfied with equality
for φmj > 0. Thus the sufficient condition in theorem 3 is
equivalent to amj ≥ 0 for all j �= n, (m, j) ∈ L with equality
for φmj > 0.
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Let’s consider that imin(m) is a value of l that achieves the
minimization in (15), then

φmj(1) =

{
φmj − δmj j �= imin(m)
φmj +

∑
j �=imin(m) δmj j = imin(m).

The algorithm reduces the fraction of traffic sent on non-
optimal (high distortion) paths and increases the fraction on
the best path. The amount of reduction is given by δk

mj which
is inversely proportional to the scale factor η. For η very small,
convergence of the algorithm is slow but guaranteed as shown
in following theorem.

Theorem 4 For each (m, j) ∈ L, assume that Dmj(β
′
mj) has

a negative first derivative and non-negative second derivative
for 0 < β

′
mj ≤ 1 and that limβmj→0 Dmj(βmj) = ∞. For

every positive number D0, if φ(0) satisfies DT (φ(0)) ≤ D0,
then there exists a scale factor η for Γ such that

lim
l→∞

DT (φ(l)) = min
φ

DT (φ)

where φ(l) = Γ(φ(l − 1)).

Proof: See the technical report [19].

IV. RELATED WORK

Joint optimization of source coding and routing for lossy
data compression is proposed in [9], where high resolution
source coding is assumed. The problem considered in [9] is to
find the optimal distributed transmission structure and the rate-
distortion allocations in which the total power consumption
minimized. [8] proposed a distributed joint source-network
coding algorithm that maximizes an aggregate utility measure
that is defined in terms of the distortion levels of the data
sources. In both of these works it is assumed that the rate-
distortion region, and therefore the correlation structure among
data sources, is known by the source nodes in the network.
Distributed rate-distortion optimization for video compression
[21]–[23] is another example in which the in-network process-
ing is limited to source compression algorithm.

In [10] a distributed stream processing systems consisting
of a network of servers is considered in which each server
provides processing services to the input streams. The network
source is considered to be constrained both in computing
power at each server and the bandwidth capacity over commu-
nication links. [10] proposed a joint routing, source allocation
distributed algorithm to minimize a utility loss in the network,
thus is relevant to our problem. However, in [10] the utility loss
is simply defined as the difference between the overall utility
of source data and the utility can be delivered by the network
to the destination, where sources are processed independently
from each other at the intermediate nodes. Moreover, in-
network processing is restricted to be the same over any two
distinct paths that have the same starting and ending node.

V. CONCLUSION

In this paper we proposed an optimal routing strategy
to minimize the distortion cost of processing data in the

network. We first defined the distortion metric for point-to-
point communication. We then showed how this definition
could be generalized to a network setting. The proposed
routing algorithm requires each node to locally compute its
own routing variables based on update information from
downstream neighboring nodes. This algorithm reduces the
fraction of traffic sent on non-optimal (high distortion) paths
and increases the fraction on the best path.
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