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Abstract—A wide range of wireless channel models have been
developed to model variations in received signal strength. In
contrast to prior work, which has focused primarily on channel
modeling on a short, per- packet timescale (millisecond), we
develop and validate a finite-state Markov chain model that
captures variations due to shadowing, which occur at coarser
time scales. The Markov chain is constructed by partitioning the
entire range of shadowing into a finite number of intervals. We
determine the Markov chain transition matrix in two ways: (i)
via an abstract modeling approach in which shadowing effects
are modeled as a log-normally distributed random variable
affecting the received power, and the transition probabilities are
derived as functions of the variance and autocorrelation function
of shadowing; (ii) via an empirical approach, in which the
transition matrix is calculated by directly measuring the changes
in signal strengths collected in a 802.16e (WiMAX) network. We
validate the abstract model by comparing its steady state and
transient performance predictions with those computed using the
empirically derived transition matrix and those observed in the
actual traces themselves.

I. INTRODUCTION

A large number of finite-state Markov chain models have

been proposed to study the wireless channel quality and the

received signal strength, beginning with the early Gilbert

and Elliot two-state Markov channel [1], [2]. Variation in

received signal strength over a wireless channel is caused by

three main factors: multipath fading, path loss and shadowing.

Among these three effects, fading is caused by constructive

or destructive effects of multipath waves and changes in the

order of milliseconds depending on the speed of the receiver

and the frequency of transmission. Conversely, shadowing and

path loss cause fluctuations in the signal level in the order

of seconds and tens of seconds respectively. Path loss is the

deterministic distance-dependent component of the received

power. Superimposed on path loss is shadowing - a random

process that captures variations in the received signal caused

by changes in the environment (buildings, foliage and motion

in the surroundings). Informally, shadowing is the variation in

signal strength at the seconds’ timescale that is independent

of the distance between the transmitter and receiver.

We focus on shadowing in this paper and develop and

validate a Markov chain to model the effects of shadowing on

the received signal strength, that occur on the order of seconds.

This shadowing model can be used in analyzing performance

of wireless network protocols (e.g., for route adaptation, or

for video transmission) that adapt their behavior in response

to link-level changes at the timescale of seconds. We discuss

applications of coarse-timescale channel modeling in detail in

Section II. The underlying physical channel model assumes

that the variation in received signal strength due to shadowing

is a lognormally-distributed random variable with zero mean

[3] and has an exponential autocorrelation function [4]. An

exponential autocorrelation function in turn implies that shad-

owing follows a First Order Autoregressive AR(1) process[5].

The AR(1) process is a Markov process [5] because the current

value of the process at time t depends only the value at

t−1. These assumptions together enable the construction of a

Markov chain model that captures the impact of shadowing on

received power. We divide the entire range of shadowing into a

finite number of intervals with each interval corresponding to

a state in the Markov chain. We then determine the transition

matrix of the Markov chain, investigating two methods for

determining this transition matrix:

• Model-based transition matrix. In this method we derive

mathematical expressions for the transition probabilities

of the Markov chain using the properties of shadowing

(log-normal distribution and exponential autocorrelation).

This approach is parsimonious in nature as the transition

probabilities depend only on the variance (σ2) and the

exponent (ρ) of the exponential autocorrelation function

of shadowing. We refer to the transition matrix derived

using this approach as the analytical one.

• Empirical transition matrix. The transition matrix can

also be determined by conducting real world experi-

ments, collecting received signal strength measurements,

extracting the shadowing values and then determining

the transitions from one state to the other. We refer to

the transition matrix derived using this approach as the

empirical one.

We also perform signal strength measurements in a WiMAX

(802.16e) network and validate the assumptions of the Markov

chain model using real world data. We use hypothesis testing

and determine that the log-normal assumption of shadowing is

a valid one. However our experiments show that the autocor-

relation function does not follow an exponential distribution

and hence the Markovian behavior described above fails to

hold in practice.

We then determine the values of the analytical and empirical

transition matrices using the measurements collected. Finally
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we compare the results (steady state occupancies and the

transient behavior of the Markov chain) obtained by the two

approaches with the observed shadowing-state distributions

and find that they are quite close to one another even though

the Markovian assumption is not corroborated by empirical

measurements.

The rest of paper is organized as follows. In Section II, we

discuss related work. We describe our Markov chain model

in Section III and describe two approaches for deriving its

transition matrix in Section IV. The assumptions of the

model are validated in Section V while a comparison of the

experimental and analytical results are presented in Section

VI. We finally conclude the paper in SectionVII.

II. RELATED WORK AND APPLICATIONS

There is a great deal of research on developing Markov

chain models for wireless channels, with the earliest work

in this area being the simple, two-state model proposed by

Gilbert and Elliot [1], [2]. We discuss several of these previous

works here, focusing on those that are most closely related

to our own work and highlighting the new contributions in

this present paper. In [6] a range of signal-to-noise ratio

(SNR)values represents a state in the Markov chain. Based

on this assumption the authors provide analytical expressions

for the state transition probabilities and error probabilities in

each state. In [7] the authors investigate the accuracy of a first-

order Markov model for the success/failure of data blocks.

A detailed survey of various channel models along with a

description of their evolution over time is available in [8].

Our work differs from these existing Markov chain models for

wireless channels in the sense that we concentrate on modeling

channel variations at a much coarser time granularity, typically

in the order of a few seconds and use shadowing to construct

our model. We also validate our assumptions and results

obtained from the model using data collected via real world

experiments in a variety of different settings.

We next survey literature specifically focused on charac-

terizing the properties of shadowing. A thorough description

of the different random processes causing variation in the

received signal strength over the wireless channel is available

in [3], [9]. The log-normal nature of shadowing has been

reported in [3], [10] and other prior work. [4] was the seminal

paper describing the autocorrelation of shadowing as being

exponentially distributed.

Recent research has proposed refined versions of the auto-

correlation depending on the environment. In [10] the authors

propose a new autocorrelation model for shadowing in urban

environments based on data collected in a Chinese city. The

correlation properties of shadowing for an indoor channel have

been studied in [11], [12]. The authors in [11] observed that

shadowing is very environment specific and that correlation

can be found in well-separated links if their environment is

similar. Oesteges et. al perform an empirical characterization

of the received power over a wireless channel in [13] for the

outdoor-to-outdoor and indoor-to-indoor environment. They

introduce several new aspects specific to multi-user distributed

channels and also suggest that shadowing be divided into

two components: a static and a dynamic one. Thus, while

previous research on shadowing has focused primarily on

the underlying process and on studying and characterizing

the different properties (distribution, autocorrelation, cross-

correlation) of shadowing itself, our work in unique in that

we construct a Markov chain model assuming the log-normal

distribution and exponential autocorrelation of shadowing.

Before describing our Markov chain model in detail we first

discuss several applications where coarse-timescale channel

prediction is potentially valuable; this will help motivate the

application of the results of this work. The first application is

the scheduling of multiple video streams over a 3G/WiMAX

network with the objective of minimizing the number of

playout jitters. Let us assume a simple time slotted scheme

in which a video stalls if there is not enough data to play out

in a timeslot. Such a model would require channel estimation

from one timeslot to the other. Further to facilitate a smooth

viewing experience the timeslots should be in the order of

seconds instead of milliseconds to avoid experiencing large

number of small glitches.

Bulk transfer of data in energy constrained mobile sensor

nodes would be facilitated by coarse timescale prediction

as it would provide ample time to the nodes to boot up

from sleep when the channel is good and then transmit their

data. Disconnection prediction and topology management in

mobile ad-hoc networks would also be aided by channel

quality prediction at a coarse time granularity. Rate control

on a block of data is gaining popularity and a successful

implementation of a block based scheme would require a

coarse timescale channel model to predict channel variations

from one block to the next (a block can take 1-2 seconds to

be transmitted) coupled with a fine grained tracking of signal

strength fluctuations within a block.

III. A SHADOWING-BASED CHANNEL MODEL

In this section we describe the Markov chain model for

shadowing and discuss its applicability in mobile wireless

systems. Previous theoretical and practical studies indicate

that the average received power varies logarithmically with

the distance between the transmitter and receiver; this is the

deterministic path loss component of the received power.

Superimposed on the path loss is log-normally distributed

random shadowing, which takes into account the fact that

the received signal strength at the same transmitter-to-receiver

separation can vary due to changes in the environmental

surroundings.

Let d, α, d0 be the transmitter-to-receiver separation, the

path loss coefficient and the close-in reference distance re-

spectively. The received power Pr(d) in [dBm] considering

log-normal shadowing [3] is given by

Pr(d)[dBm] = P̄r(d0) + 10αlog
d

d0

+ X (1)

where P̄r(d0) is the average received power at the reference

distance d0, the second term reflects the logarithmic depen-

dence of received power on distance, and X is the shadowing

- a zero-mean Gaussian random variable with variance σ2 in

[dB]. Therefore, (1) demonstrates the effect of shadowing on

received power.
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Shadowing (in dB) [3] is assumed to be N(0, σ2) while both
its spatial and temporal autocorrelation functions are assumed

to be exponential [4], [10], [14]. Let Xi and Xi+n be the

shadowing samples at time i and i+n respectively. There are n
samples between i and i+n and let the time difference between

two consecutive samples be δt. The temporal autocorrelation

between Xi and Xi+n is given by,

ρn =
E[XiXi+n]

σ2
= e−

nδt
τ (2)

If the autocorrelation between two successive samples is

denoted by ρ = e−
δt
τ , we have ρn = ρn. We denote ρ as

the autocorrelation coefficient.

An exponential autocorrelation function implies that the

random process is a first-order autoregressive AR(1) process

[5]. Therefore the shadowing samples form an AR(1) process

[14], and we can write the following equation

Xi = ρXi−1 + (1 − ρ)ei (3)

where ei is white noise and is ∼ N(0, σ2
e). Furthermore ei

and Xi−1 are independent of each other. Xi being an AR(1)

process also implies that shadowing is a Markovian process

[5]. This is evident from (3) as well, since Xi depends only

on Xi−1.

Our Markov chain model for shadowing is constructed as

follows. The entire range of shadowing is partitioned into

a finite number of intervals (N), where each state of the

Markov chain corresponds to one such interval. Let us assume

that the shadowing range is divided in the following way;

(A0, A1....AN ) where A0 and AN correspond to −∞ and

∞ respectively, as shadowing is Gaussian distributed. Let Yi

denote that the X value is between Ai−1 and Ai. Therefore,

the set {Yi} denotes the states of the Markov chain. The goal

is to derive the state transition matrix of the Markov chain,

i.e., the transition probabilities Pij from range Yi to range Yj ,

∀i, j ∈ N . We describe approaches for numerically computing

the transition matrix in Section IV.

In this section we constructed a Markov chain model that

captures the effects of shadowing on the received power. We

note that the overall variation in received power can only

be captured by modeling both the variation in the distance

and in shadowing, as evident in (1). However, if we assume

that the distance remains constant during the time interval of

interest, changes in the signal strength can be represented by

modeling the effects of shadowing alone. The distance/average

signal strength may well change more slowly, and can be

updated at the sender based on feedback from the receiver

at a coarser timescale. This may be a valid assumption for

most applications, especially for those with lower mobility

operating over ad-hoc and 3G/ cellular networks. We discuss

this issue further in Section VII.

IV. DETERMINING THE TRANSITION MATRIX

In this section we describe the analytical and empirical

approaches for determining the transition matrix of the Markov

model for shadowing.

A. Analytical Approach

From the previous section, we know that shadowing (X) is

normally distributed and that it is a Markov process (3). We

now determine the state transition probabilities (P ′
ijs,) and

begin by stating the following lemma.

Lemma 1: Two consecutive shadowing samples are jointly

Gaussian

Proof: From (3), ei and Xi−1 are independent and both

are themselves Gaussian. Hence ei and Xi−1 are jointly

Gaussian. From the Cramer-Wold Device it is known that Xi

and Xi−1 will be jointly Gaussian if any linear combination

of them is Gaussian. Any linear combination of Xi and Xi−1

can be represented as

Z = αXi + βXi−1 = (αρ + β)Xi−1 + α(1 − ρ)ei (4)

ei and Xi−1 are jointly Gaussian which means that Z is

Gaussian. Hence using the Cramer-Wold Device we have that

Xi and Xi−1 are jointly Gaussian.

To calculate the transition probability Pij , we must deter-

mine the probability of transitioning from range Yi to range

Yj at any time step k. Xk and Xk−1 being jointly Gaussian

implies that Xk+1|Xk ∼ N(ρxk, σ2(1 − ρ2)). Moreover we

have that Xk ∼ N(0, σ2). Therefore, we have

Pij = P (Xk+1 ∈ Yj |Xk ∈ Yi)

=
P ({Xk+1 ∈ Yj} ∩ {Xk ∈ Yi})

P ({Xk ∈ Yi})

=

∫
Yi

(
∫

Yj
fXk+1|Xk

(x2|x1)dx2)fXk
(x1)dx1∫

Yi
fXk

(x1)dx1

(5)

As the distributions of Xk+1|Xk and Xk are Gaussian,∫
Yj

fXk+1|Xk
(x2|x1)dx2 and

∫
Yi

fXk
(x1)dx1 can easily be

calculated using error functions. The absolute value of Pij can

then be numerically calculated, as the integral in the numer-

ator can be easily solved using a mathematical package like

MATLAB, once the values of ρ and σ have been determined.

B. Empirical Approach

The transition matrix can also be determined by performing

signal strength measurements at the receiver for experiments

conducted over any desired network. The first task is to extract

the shadowing values by eliminating the deterministic distance

dependent path loss. We then determine the states of the

Markov chain to which each of the shadowing values cor-

respond to. Therefore, we have the sequence of states through

which the Markov chain has progressed. The subsequent step

is to determine the number of transitions from each state to

the others by observing the sequence of states. For example,

suppose there are 6 states in all and that the sequence of states

is {......2, 4, 6, 2, 4......}. The subsequence {2, 4} means that

we increment the number of transitions from state 2 to state

4 by one. The next transitions are from states 4 to 6, 6 to

2 followed by another transition from 2 to 4. Once all the

transitions have been considered, we use the relative values of

the numbers of transitions from state i to state j for all states

j to determine the empirical transition probabilities from state

i to all states j, Pij .
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In this paper we determine the parameters (σ, ρ) needed for

the analytically-determined transition matrix and the directly

observed transition probabilities Pi,j in the empirical transition

matrix from experiments conducted over a WiMAX network.

From the received power measurements we first extract the

shadowing values. The variance and autocorrelation coefficient

of the shadowing values are then determined, which are used

to obtain the transition matrix analytically. The shadowing

values are also used to obtain the empirical transition matrix

by observing the transitions between successive shadowing

samples.

V. VALIDATING THE MODEL

In the preceding sections we developed a Markov chain

model for channel prediction based on changes in the received

signal strength due to shadowing. Our goal in this section and

the next is to conduct real world experiments and extract the

shadowing samples to (i) corroborate the underlying model

assumptions - that shadowing follows a normal distribution

and that the autocorrelation of shadowing has an exponential

distribution, (ii) determine the transition matrix of the Markov

chain analytically and empirically, from the data collected,

and (iii) compare the analytically and empirically obtained

transition matrices, and the channel performance predictions

made via the Markov chain models using these transition

matrices to assess the ultimate usefulness of our model.

A. WiMAX experiments

We collected data under varying levels of user mobility

(pedestrian and vehicular) for experiments carried out over

a 802.16e (WiMAX) network. Channel quality measurements

were taken by continuously transmitting data from a base

station and receiving them on a laptop. The WiMAX measure-

ments were carried out outdoors for pedestrian and vehicular

mobility cases. Stationary outdoor measurements were also

taken but changes in signal strength were found to be confined

to a 4 dBm range. This implies that the channel essentially

remains invariant and thus of little interest to us. Hence we

do not explore this case any further here.

The WiMAX experiments were carried out at WINLAB

in New Jersey, where the base station is mounted on the

roof of a WINLAB building. The frequency of transmission

for WiMAX is 2.59 GHz and its range is approximately

500m. We note that the diversity of our measurements would

have increased if the experiments were conducted in different

physical locations, as shadowing is dependent on the environ-

ment. But with only one WiMAX base station available, all

measurements were taken within the campus. We look forward

to future studies that will build on this initial modeling and

measurement work.

The distance variation from the outdoor base station was

captured using a GPS device attached to the laptop. The GPS

device provided latitude and longitude information, which

was then converted to 2D-Cartesian coordinates. The height

of the base station from the ground was also measured

and the transmitter-to-receiver distances calculated from this

information.

We obtain signal strength quality one second apart from

each another. To eliminate any fast fading effects, we consider

the average signal strength at the beginning of each second.

The average signal strength at the beginning of each second is

obtained by averaging approximately 5 received power sam-

ples during a 50 ms period centered around the integer-values

time (second) value. The shadowing samples were extracted by

observing the deviation of the received power samples from the

log distance relation. In all, three vehicular and two pedestrian

traces were collected, each having a duration of approximately

8 minutes.

1) Normality Testing of Shadow Samples: We use the

Kolmogorov-Smirnov goodness of fit test to determine the nor-

mality of shadowing for the traces collected. Let σ2
sam denote

the variance of the collected samples for any trace considered.

The null hypothesis is the following: The samples are drawn

from a normal distribution having mean 0 and variance σ2
sam.

Our tests failed to reject the null hypothesis at any acceptable

level of significance for both the vehicular and pedestrian

traces. The smoothed probability distribution obtained for one

of the vehicular traces using the kernel density estimation

method and the corresponding normal distribution are shown

in Figure 1. The standard deviation for this trace is 4.4 dB.
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Fig. 1. WiMAX: Shadow Samples follow a Normal Distribution

2) Testing for Exponential Autocorrelation: The temporal

autocorrelation function of shadowing for the three different

vehicular traces along with the mean of these three traces

is shown in Figure 2. We observe that the autocorrelation

function does not follow an exponential distribution when

the traces are considered individually. The data for pedestrian

mobility in Figure 3 similarly shows that the autocorrela-

tion function for these traces does not have an exponential

distribution. Moreover, while we observed that the average

autocorrelation was roughly exponentially distributed for the

case of vehicular mobility, this is not the case for pedestrian

mobility.

B. WiFi Experiments

The results reported in this paper are mostly for an outdoor

WiMAX network. However our model is not restricted to that

particular scenario and can be applied, for example, to an

indoor setting like 802.11g (WiFi). We validate the log-normal

distribution and exponential autocorrelation of shadowing for
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Fig. 2. WiMAX: Autocorrelation of Shadow Samples (Vehicular Mobility)
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Fig. 3. WiMAX: Autocorrelation of Shadow Samples (Pedestrian Mobility)

the WiFi case and report the results here. However due to

difficulty in collecting a sufficient amount of data, we were not

able to compute the empirical transition matrix and compare

the steady state and transient distributions of the Markov chain

for the WiFi experiments.

The WiFi experimental setup consisted of 2 laptops, each

with 802.11g wireless cards. The frequency of transmission

was 2.412 GHz. The transmitter was kept inside a room

while measurements were taken by moving down the hallway

with the receiver. As GPS data cannot be collected indoors,

the transmitter-to-receiver distances were calculated manually

in this indoor setting. The transmitter was configured to

send data packets continuously and received signal strength

measurements were taken at the receiver at distances 1 feet

apart. In all, a total of 140 data points were collected over a

distance of 140 feet. To eliminate the effects of fading, the

average received power at each location was calculated by

considering a total of 5000 packets. We gathered data in this

manner (e.g., rather than walking continuously) because we

found that it was very difficult to assess the speed of walking

and significant errors could be introduced if the relationship

between received power and distance was incorrect. Due to

the limited transmitter range, it was not possible to collect a

large amount of data indoors.

Shadowing can depend strongly on the environment and so

we collected data in three different settings using the setup

described above. Two of the measurements were made in the

Computer Science building at UMASS (a new building with

more metal in it), while the other measurement was conducted

in the Engineering building (a relatively older building with

more concrete in it). The next task was to determine the

distribution and autocorrelation function of shadowing in these

settings.

We again observe that shadowing follows a normal distri-

bution and our tests failed to reject the null hypothesis at

reasonable levels of significance. The autocorrelation of the

individual traces however, was not found to have an exponen-

tial distribution, as in the case of our WiMAX measurements.

However, the average autocorrelation once again was found to

be approximately exponential. This fact is evident in Figure

4.

Our WiMAX and WiFi experiments indicate the following.

Our shadowing measurements indeed follow a normal distribu-

tion in both outdoor and indoor environments, for both pedes-

trian and vehicular mobility. The autocorrelation, however, can

be expected to be exponential only on average and not for the

individual traces. This also implies that shadowing does not

satisfy one of the requirements needed for a Markovian model.

In the following section we will see, however, that in spite of

the fact that shadowing does not satisfy both properties needed

to make it a Markov process, a Markov chain model based on

Markovian assumptions can still be used to accurately predict

performance measures of interest.
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Fig. 4. WiFi: Autocorrelation of Shadow Samples

VI. RESULTS

In this section we construct the Markov chain

by dividing shadowing into the following intervals

{−∞,−σsam,−σsam

2
, 0, σsam

2
, σsam,∞}. The size of

the intervals is chosen in this manner so that there are

sufficient data points in each interval. As shadowing follows

a normal distribution the probability of receiving shadow

samples becomes very small as we move away from the

mean and so we consider the interval beyond mod(σsam) as

an open interval.

We then determine the transition matrix analytically and

empirically for the different vehicular and pedestrian traces

using the approaches outlined in Section IV. We compute the

standard deviation and autocorrelation coefficient needed to

determine the analytic transition matrix. Table I lists these

values for the vehicular and pedestrian traces. As expected, the
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Fig. 5. Comparison of analytical and empirical steady state occupancies of the Markov chain with the observed occupancy: Vehicular Mobility
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Fig. 6. Comparison of analytical and empirical steady state occupancies of the Markov chain with the observed occupancy: Pedestrian Mobility

Standard Autocorrelation
Deviation Coefficient

Vehicular
Trace 1 4.4 0.84
Trace2 4.3 0.83
Trace 3 4.6 0.86

Pedestrian
Trace 1 3.6 0.84
Trace 2 3.6 0.87

TABLE I
STANDARD DEVIATION AND AUTOCORRELATION COEFFICIENT

values for the vehicular trace are close to one another while the

same is true for the pedestrian traces. Tables II and III show the

analytical and empirical transition matrix respectively for the

vehicular trace whose distribution is characterized in Figure

1. Having determined the transition matrices, the ensuing step

is to examine the closeness of the system state behavior (e.g.,

steady state and transient behavior), as calculated via one of

the Markov chain models, and as observed empirically.

A. Steady State Behavior

In this subsection we obtain the steady state distributions

using the analytical and empirical transition matrices. We

then compare them with the empirically observed shadowing-

state occupancies (True Occupancy). The True Occupancy is

calculated by counting the number of shadowing samples in

each interval and then normalizing them by the total number

of samples. Figures 5 and 6 show the steady state behavior

for the 3 vehicular and 2 pedestrian traces respectively. We

observe that in terms of the steady state distribution, the

parsimonious analytical approach and the empirical method

match the true occupancies very closely. Figures 5 and 6 show

good agreement in the model-predicted and observed steady

state shadowing values, in spite of the lack of exponential

State 1 State 2 State 3 State 4 State 5 State 6
State 1 0.6433 0.2334 0.0983 0.0211 0.0023 0.0001
State 2 0.2471 0.3290 0.2811 0.1169 0.0235 0.0024
State 3 0.0815 0.2202 0.3374 0.2519 0.0915 0.0175
State 4 0.0175 0.0915 0.2519 0.3374 0.2202 0.0815
State 5 0.0024 0.0235 0.1169 0.2811 0.3290 0.2471
State 6 0.0001 0.0023 0.0211 0.0983 0.2334 0.6433

TABLE II
VEHICULAR: ANALYTICAL TRANSITION MATRIX

State 1 State 2 State 3 State 4 State 5 State 6
State 1 0.6883 0.2078 0.0909 0 0 0.0130
State 2 0.2381 0.3651 0.3016 0.0794 0 0.0159
State 3 0.0619 0.1649 0.4948 0.1856 0.0515 0.0412
State 4 0.0380 0.0633 0.2152 0.4304 0.1519 0.1013
State 5 0 0.0192 0.0577 0.2885 0.3846 0.2500
State 6 0 0.0244 0.0488 0.0854 0.1829 0.6585

TABLE III
VEHICULAR: EMPIRICAL TRANSITION MATRIX

autocorrelation evidenced in Figures 2 and 3.

B. Transient Behavior

Having studied and validated the steady state behavior in

the previous subsection, we focus on the transient state anal-

ysis here. We begin by determining the empirically observed

distribution of transitioning to the different shadowing states

as a function of the number of time steps (starting from any

state). For example, from the traces collected, we calculate the

probability of transitioning to the other states after 2 time steps

starting from say, state 3. We once again refer to this as the

True Occupancy. The transition probability distribution as a

function of the number of time steps is also obtained from the

analytical and empirical transition matrices. As the number of
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Mean Variance Mean Variance
(2 step) (2 step) (5 step) (5 step)

Trace 1
Anal 3.19 1.99 3.35 2.64
Emp 3.21 1.88 3.34 2.67
True 3.08 1.57 3.2 2.28

Trace 2
Anal 3.19 1.99 3.35 2.63
Emp 3.17 1.95 3.30 2.77
True 3.29 1.89 3.5 2.88

Trace 2
Anal 3.17 1.8 3.3 2.54
Emp 3.29 1.94 3.42 2.66
True 3.16 1.19 3.47 2.47

TABLE IV
TRANSIENT STATE BEHAVIOR: VEHICULAR MOBILITY

Mean Variance Mean Variance
(2 step) (2 step) (5 step) (5 step)

Trace 1
Anal 3.18 1.93 3.33 2.6
Emp 2.86 2.0 3.1 2.75
True 2.78 1.06 2.86 1.57

Trace 2
Anal 3.15 1.74 3.30 2.52
Emp 3.12 1.79 3.33 2.78
True 3.06 0.92 3.07 1.05

TABLE V
TRANSIENT STATE BEHAVIOR: PEDESTRIAN MOBILITY

time steps increase the transient behavior will approach steady

state.

We study the transient behavior of the Markov chain by

comparing the first and second moments (the mean and vari-

ance) of the distributions obtained by the various approaches.

We assign numerical values 1 through 6 for the different states

of the Markov Chain. The states of the Markov chain being

abstract, the absolute values of the mean and variance do not

have any physical interpretation. The goal of this analysis is

to compare the moments obtained by the different methods

to determine the closeness of the distributions. For sake of

conciseness we represent the 2 and 5 time step transitions from

state 3 in Tables IV and V for the vehicular and pedestrian

traces respectively. From Table IV we observe that the mean

and variance obtained by the analytical and empirical methods

are close to true occupancies for the vehicular mobility sce-

nario. For the pedestrian mobility scenario, the performance

of the analytical and empirical methods is comparable to

one another. But unlike the vehicular mobility case, their

performance is not that close to the True Occupancy. We

also studied the transition probability distribution from the

other states graphically for the vehicular and pedestrian traces

and similarly observed that performance of the empirical and

analytical approaches were comparable but were sometimes

not that close to the True Occupancy.

We also compare the different distributions in terms of the

total variation [15]. The total variation between a probability

distribution P and a probability distribution Q with n out-

comes is given by,

Total V ariation =
1

2

n∑

i=1

|pi − qi| (6)

Tables VI and VII present the 2 and 5 time step total variation

between the analytical and true occupancies as well as the

empirical and true occupancies for the vehicular and pedestrian

Anal-True Emp-True Anal-True Emp-True
(2 step) (2 step) (5 step) (5 step)

Trace1 0.15 0.10 0.06 0.08
Trace2 0.22 0.11 0.11 0.06
Trace3 0.13 0.14 0.07 0.05

TABLE VI
TOTAL VARIATION: VEHICULAR MOBILITY

Anal-True Emp-True Anal-True Emp-True
(2 step) (2 step) (5 step) (5 step)

Trace1 0.21 0.20 0.20 0.16
Trace2 0.22 0.21 0.31 0.33

TABLE VII
TOTAL VARIATION: PEDESTRIAN MOBILITY

traces respectively. We observe from these tables that the total

variation is small, which implies that the distributions are

close to each other. Once again, we observe that the vehicular

mobility results are better than the pedestrian mobility case.

We would like to note here that the after about 25 steps,

the probability distribution obtained by the analytical and

empirical transition matrices from any state reaches very close

(5%) to the steady state distribution for all the vehicular and

pedestrian mobility cases.

Our analysis of the steady state and transient behavior shows

that the Markov chain model has good agreement between the

model-predicted and true distributions, though the assumption

of shadowing having an exponential autocorrelation function

is violated.

VII. CONCLUSION

In this paper, we presented a channel prediction model based

on shadowing. The total received signal strength is dependent

both on distance and shadowing. If we assume that the distance

remains unaltered during the time period of interest, we can

just rely on shadowing to capture the variations in signal

strength. However in situations where the above premise does

not hold true one can combine the shadowing-based Markov

chain model with a mobility one to model signal strength

fluctuations. A complete and thorough survey of the different

mobility models and their applicability in various scenarios

can be found in [16]. Depending on the type of mobility, one

can choose the appropriate model and then combine it with

the shadowing based one to model the variations in the overall

received power. We plan to pursue this as future work.

In conclusion, we can say that we developed and validated

a finite-state Markov chain channel model to capture wireless

channel variations due to shadowing. We obtain the Markov

chain transition matrix in two ways: (i) via a parsimonious

modeling approach in which shadowing effects are modeled

as a log normally distributed random variable affecting the

received power, and the transition probabilities are derived as

functions of the variance and autocorrelation function of shad-

owing; (ii) via an empirical approach, in which the Markov

chain transition matrix is calculated by directly measuring the

changes in signal strengths collected in an 802.16e (WiMAX)

network. The model validation showed that the assumption that

the variation in received signal strength due to shadowing had

a lognormally-distributed random variable was a good one, but
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that the assumption of an exponential autocorrelation function

was violated. Nonetheless, the Markov chain model showed

good agreement between the model-predicted and observed

values of shadowing for both the steady state and transient

behavior.

VIII. ACKNOWLEDGEMENT

This research was sponsored by the National Science Foun-

dation under grants CNS-1018464 and CNS-1040781, and

by the US Army Research laboratory and the UK Ministry

of Defense and was accomplished under Agreement Number

W911NF-06-3-0001. The views and conclusions contained

in this document are those of the authors and should not

be interpreted as representing the official policies, either

expressed or implied, of the US Army Research Laboratory,

the U.S. Government, the UK Ministry of Defense, or the UK

Government. The US and UK Governments are authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation hereon.

REFERENCES

[1] E. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. Journal,
vol. 39, 1960.

[2] E. Elliot, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. Journal, vol. 42, 1963.

[3] T. Rappaport, Wireless Communications: Principles and Practice. Pren-
tice Hall, 2002.

[4] M. Gudmundson, “Correlation model for shadow fading in mobile radio
systems,” Electronic Letters, vol. 27, no. 23, 1991.

[5] W. W. Wei, Time Series Analysis: Univariate and Multivariate Methods.
Pearson Addison Wesley, 2006.

[6] H. S. Wang and N. Moayeri, “Finite-state markov channel- a useful
model for radio communication channels,” IEEE Trans. On Vehicular
Technology, vol. 44, no. 1, 1995.

[7] M. Zorzi, R. Rao, and L. Milstein, “On the accuracy of a first-order
markov model for data block transmission on fading channels,” in IEEE
ICUPC, 1995.

[8] P. Sadeghi, R. A. Kennedy, P. Rapajic, and R. Shams, “Finite-state
markov modeling for fading channels- a survey of principles and
applications,” IEEE Signal Processing Magazine, vol. 25, no. 5, 2008.

[9] D. Tse and P. Vishwanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[10] Y. Zhang, J. Zhang, D. Dong, X. Nie, G. Liu, and P. Zhang, “A
novel spatial autocorrelation model of shadow fading in urban macro
environments,” in IEEE GLOBECOM, 2008.

[11] N. M. Jalden, P. Zetterberg, B. Ottersten, A. Hong, and R. Thoma, “Cor-
relation properties of large scale fading based on indoor measurements,”
in IEEE PIMRC, 2007.

[12] R. Sharma and J. Wallace, “Indoor shadowing correlation measurements
for cognitive radio systems,” in IEEE APSURSI, 2009.

[13] C. Oestges, N. Czink, B. Bandemer, and P. Castigoline, “Experimental
characterization and modeling of outdoor-to-outdoor and indoor-to-
indoor distributed channels,” IEEE Trans. On Vehicular Technology,
vol. 59, 2010.

[14] J. Wui, S. Affes, and P. Mermelstein, “Forward-link soft-handoff in
cdma with multiple-antenna selection and fast joint power control,” IEEE
Trans. on Wireless Comm., vol. 2, no. 3, 2003.

[15] D. A. Levin, “Coupling ams short course, university of oregon.”
[16] N. Aschenbruck, E. Gerhards-Padilla, and P. Martini, “A survey on

mobility models for performance analysis in tactical mobile networks,”
Journal of Telecommunications and Information Technology, 2008.

1807


