
On Managing Quality of Experience of Multiple

Video Streams in Wireless Networks

Partha Dutta1∗, Anand Seetharam2∗, Vijay Arya1, Malolan Chetlur1, Shivkumar Kalyanaraman1, Jim Kurose2

1IBM Research, Bangalore, India
2Department of Computer Science, University of Massachusetts, Amherst, USA

{parthdut, vijay.arya, mchetlur, shivkumar-k}@in.ibm.com, {anand, kurose}@cs.umass.edu

Abstract—Managing the Quality-of-Experience (QoE) of video
streaming for wireless clients is becoming increasingly important
due to the rapid growth of video traffic on wireless networks.
The inherent variability of the wireless channel as well as the
Variable Bit Rate (VBR) of the compressed video streams make
QoE management a challenging problem. Prior work has studied
this problem in the context of transmitting a single video stream.
In this paper, we investigate multiplexing schemes to transmit
multiple video streams from a base station to mobile clients that
use number of playout stalls as a performance metric.
In this context, we present an epoch-by-epoch framework to

fairly allocate wireless transmission slots to streaming videos. In
each epoch our scheme essentially reduces the vulnerability to
stalling by allocating slots to videos in a way that maximizes the
minimum ‘playout lead’ across all videos. Next, we show that
the problem of allocating slots fairly is NP-complete even for a
constant number of videos. We then present a fast lead-aware
greedy algorithm for the problem. Our choice of greedy algorithm
is motivated by the fact that this algorithm is optimal when the
channel quality of a user remains unchanged within an epoch
(but different users may experience different channel quality).
Moreover, our experimental results based on public MPEG-4
video traces and wireless channel traces that we collected from
a WiMAX test-bed show that the lead-aware greedy approach
performs a fair distribution of stalls across the clients when
compared to other algorithms, while still maintaining similar
or lower average number of stalls per client.

I. INTRODUCTION

With the deployment of broadband wireless networks, the

popularity of multimedia content on mobile devices is ex-

pected to increase significantly. A large portion of multimedia

traffic is forecasted to be recorded videos such as movies,

YouTube videos, and TV shows [1]. The inherent variability of

both the wireless channel and the bit rate of compressed videos

makes streaming videos on wireless networks a challenging

task. This work investigates how multiple Variable Bit Rate

(VBR) videos can be multiplexed over a time-varying wireless

channel while still maintaining a good QoE at the mobile

clients.

A wireless video streaming system consists of a video

server connected to a base station over a high bandwidth

wired backbone link and clients at Mobile Stations (MS) that

communicate with the Base Station (BS) using a wireless

channel (Fig. 1). The server stores pre-encoded videos, and

∗ The first two authors are primary authors of this work.

Wireless Link

Video Server

Wired Link
BS

MS

Fig. 1. A video streaming system

upon receiving requests, streams videos to the requesting

clients. A video stream is composed of a sequence of frames

that the client buffers and plays according to their playout

times. If a frame is not received by its playout time, the client

degrades the quality of the displayed video or it may stall the

video to wait for more frames to arrive, or both. This work

considers systems that stall in response to delayed frames.

When streaming multiple videos over a wireless channel, in

the scenario where the rate of each video as well as the rate

available to each wireless client varies with time, the server can

distribute stalls among video streams by appropriately multi-

plexing or scheduling their transmissions. This paper considers

this multiplexing problem with the goal of minimizing stalls

across all mobile clients.

The frame transmission scheduling/multiplexing scheme we

investigate in this paper makes three contributions. First, we

present an epoch-by-epoch framework based on two ideas:

(a) We divide the transmission time into epochs and use a

Markov model to estimate the set of rates available to each

wireless client during the next epoch. (b) We define the playout

lead of a video at a given time as the duration of time the

video can be played using only the data already buffered by

its client. Since the playout lead plays an important role in

determining whether a video stalls in an epoch, we present a

fair multiplexing scheme that takes into account the channel

rates and maximizes the minimum lead among all videos in

an epoch. Second, we show that the optimization problem of

maximizing the minimum lead is NP-complete even for two

videos. We present a fast lead-aware greedy algorithm that is

sub-optimal for wireless channels, but show that this algorithm

is optimal when the channel quality of a user does not vary

within an epoch, even with different users possibly having

different channel quality. Finally, we conduct trace-driven

simulations with publicly available MPEG-4 video traces,

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 1242

and wireless channel quality traces that we collected from a

WiMAX test-bed. Our simulations demonstrate that the greedy

algorithm ensures a fair distribution of stalls across clients

while maintaining a low average number of stalls per client. In

particular, when the wireless network is average-provisioned as

compared to the total average bit-rate of the considered videos

(a case that is interesting in practice), the greedy algorithm

reduces the number of stalls by a factor of 3, when compared

to other algorithms in our simulations. Our results also show

that the greedy scheme is robust against changes in client’s

stall-recovery buffering scheme (which determines how long

a client stalls the video playout when a frame is not received

in time) and changes in epoch duration.

The remainder of this paper is organized as follows. The

video streaming system is described in Section II. Section III

introduces multiplexing based on playout leads and develops

the corresponding problem formulation. Hardness results are

given in Section IV followed by the greedy algorithm in

Section V. The evaluation framework and results for the exper-

iments are given in Section VI and Section VII, respectively.

Comparison with related work is presented in section VIII. We

conclude in Section IX with directions for future work.

II. STREAMING SYSTEM AND CHANNEL MODEL

We consider a video streaming system similar to [2], as

shown in Fig. 1. We assume that the server simultaneously and

separately streams n videos v1, . . . , vn to n clients 1, . . . , n via

the base station. A video object is composed of a sequence of

frames that are displayed at a constant frame rate by the client.

However, since the size of each frame varies significantly, the

required transmission rate also varies with time. For a video vi,
its playback curve pi(t) specifies the cumulative data contained

in the first t time units of the video playout, in order to play the

video without interruptions. In other words, pi(t) is the sum

of the sizes of the first t ∗ F frames of the video, where F
denotes the frame rate. The playback curve is a characteristic

of a video and is independent of the underlying channel. We

assume that clients have sufficient buffer space and they buffer

frames that have been received but not yet displayed. If the

next frame to be displayed is not received within its playout

time, the client stalls playout for a certain duration during

which it continues to buffer data received from the server. It

resumes playout based on its stall-recovery buffering scheme.

Common buffering schemes include: (i) waiting for a fixed

amount of time, (ii) waiting for a fixed amount of future

playout data, and (iii) waiting for a fixed number of future

playout frames. For a client i, its receiver curve Gi(t) specifies

the cumulative amount of data it has received by time t. The

cumulative amount of data played out by time t is given by

its playout curve Oi(t). Note that Gi(t) and Oi(t) depends on

the channel quality of the user and the transmission scheme at

the base station. Additionally, Oi(t) depends on the buffering

scheme of the client. In particular, unlike playback curve, the

playout curve may vary between different streaming instances

of the same video. Figure 2(a) shows an example playback,

receiver, and playout curve for a client. The notation used in

this paper is summarized in Table I.

TABLE I
IMPORTANT NOTATIONS (NOTE: SUBSCRIPT i REFERS TO CLIENT i AND #

DENOTES ‘NUMBER OF’)

Notation Definition

n number of clients

pi, Gi, Oi playback, receiver, playout curves (resp.)

R,A channel rate vector, transition matrix (resp.)

N in
ep , N

sl
in, N

sl
ep #intervals/epoch,#slots/interval,#slots/epoch (resp.)

Ii initial probability distribution of channel state

F frames played out per second

Yi, Vi #bits,#complete frames (resp.) transmitted in epoch
Li lead at the end of the epoch

Φi inverse playback curve

rij #bits that can be transmitted to client i in slot j

We assume a broadband wireless system (such as WiMAX)

wherein the transmission time is divided into intervals

(Fig. 2(b)). The duration of an interval is small enough so

that the channel state remains unchanged within it. Intervals

are divided into a fixed number of (transmission) slots that are

allocated to clients. The base station can transmit to at most

one client in a slot. Depending on the channel conditions, each

client receives a certain bit rate in the allocated slots. The bit

rate for a client remains the same in all slots within an interval

but can change between intervals. Following [2], we assume

that the wireless channel is error-free due to an ideal error

control mechanism such as ARQ.

III. EPOCH-BY-EPOCH MULTIPLEXING BASED ON

PLAYOUT LEADS

We define an epoch to contain a fixed number of intervals

(Fig. 2(b)). The variation of rates across intervals, as seen

at a client, is modeled using a generic discrete-time Markov

model given by (R,A) where the possible channel states are

identified by the transmission rates R = (r1, r2, . . . , rK) and

A is the transition matrix. (R is also called the rate vector.)

Here ri denotes the number of bits that can be transmitted in

a time slot when the channel is in state i [2]. Each client’s

channel is modeled as an independent Markov chain, and

each client estimates the transition matrix corresponding to

its channel as discussed below. At the beginning of the epoch,

clients send their transition matrix as well as the initial state

of the channel to the server so that the server can compute the

expected rates of all slots available to all clients during the

epoch.

At the beginning of each epoch, our multiplexing scheme

allocates slots to clients within that epoch. To motivate the

allocation strategy, note that a client’s current buffer size (in

bits) indicates its vulnerability to stalling: the smaller the

buffer, the more likely is the occurrence of a stall. However, for

VBR videos, buffer size is a poor indicator of this vulnerability

since it does not consider the amount of data needed to play

the next few frames. On the other hand, the playout lead of

the video, i.e., the duration of additional time a client can play

the video using only its buffered data, takes into account the

VBR nature of the video. Therefore in our scheme, within each

epoch the server attempts to prevent stalls by maximizing the

playout leads. To ensure that the stalls are evenly distributed

across all videos, slots are allocated such that the minimum

lead among all videos is maximized. In our system model,

1243

0 5 10 15
0

5

10

15

20

25

30

35

40

45

Time

D
a
ta

Playback Curve

Receiver Curve

Playout Curve

Lead

Stall Duration

(a) (b)

Fig. 2. (a) Playback, receiver and playout curves of a video stream (b) Epochs, Intervals, Slots

we assume that clients communicate their playout leads to the

server at the beginning of each epoch.

A. Modeling the Multiplexing Problem

As previously noted, to avoid stalls, at the beginning of each

epoch, slots are allocated to clients such that the minimum lead

among all videos is maximized at the end of that epoch. We

now present our modeling of this multiplexing problem.

Preliminaries: Let N in
ep and Nsl

in denote the number of in-

tervals in an epoch, and the number of slots in an interval,

respectively. Thus the total number slots in an epoch Nsl
ep =

N in
ep .N

sl
in. Each video is played at the constant rate of F frames

per second.

Consider the ith client in a particular epoch. Let Ii be the

state vector denoting the probability distribution of channel

states at the ith client at the beginning of the epoch. Then,

given the Markov channel model, the probability distribution

of the channel state at the client at the beginning of the kth

interval in the epoch is IiA
k.

Let Xik be the random variable denoting the number of

bits that can be transmitted to client i in any slot of the kth

interval. Then, its expectation E[Xik] is the dot product of

IiA
k and the channel transmission rate vector R. Suppose

that the server assign sik slots to client i in the kth interval.

Then the random variable Yi for the number of bits transmitted

to client i in this epoch can be expressed as
∑Nin

ep

k=1 sikXik.

From linearity of expectation, E[Yi] =
∑Nin

ep

k=1 sikE[Xik] =
∑Nin

ep

k=1 sikE[IiA
k.R].

Playout Lead: The playout lead of a video at a given time is

the additional duration of time that the video can be played out

using only data currently in the client buffer. Therefore, the

playout lead is equal to the number of complete frames in the

client buffer divided by the frame rate F . At the beginning of

the epoch, let oi and gi denote the amount of time for which

the video has been played out at the client i, and the amount

of time for which the data required for the playout has been

received at the client, respectively. (The values of oi and gi can

be computed from the calculation in the previous epoch, and

the video playout and receiver curves.) Thus, the playout lead

of the video i at the beginning of this epoch is gi−oi, and this

value is known at the beginning of the epoch. Let Li be the

random variable denoting the playout lead of the video at the

end of this epoch (assuming that the video is stalled during the

epoch), and Vi be the random variable denoting the number of

additional frames that can be completely received by the end of

this epoch. Then, Li = gi−oi+(Vi/F). (Note that the actual

playout lead at the end of the epoch is Li− (the duration for

which video i is played out in the epoch). However, we do

not consider this metric in our problem formulation because it

depends on the client’s stall-recovery buffering scheme, which

may vary across clients.)

Inverse Playback Curve: For an epoch, we now define a

deterministic function that maps the number of bits received to

the number of complete frames received. The inverse (frame)

playback curve Φi for each video i is defined as follows: if b
bits are transmitted to video i in this epoch, then the number

of complete frames that are received increases by Φi(b) at

the end of the epoch. Thus, Vi = Φi(Yi). (Note that partially

transmitting a frame does not increase the lead of the video.)

The inverse playback curve can be easily computed from the

video frame sizes.

Estimating E[Vi] from E[Yi]: As gi and oi are known con-

stants at the beginning of an epoch, E[Li] = gi−oi+E[Vi]/F .

Unfortunately, since the video frame sizes can vary widely, the

mapping Φi from Yi to Vi is non-linear, and hence, we cannot

easily obtain E[Vi] from E[Yi]. Therefore, we estimate E[Vi]
by Φi(E[Yi]). Thus, E[Li] ≈ gi − oi + (1/F)Φi(E[Yi]) =

gi − oi + (1/F)Φi(
∑Nin

ep

k=1 sikE[IiA
k . R]).

The Multiplexing Problem: Our aim, at the beginning of

an epoch, is to assign slots with the goal of maximizing the

minimum expected lead at the end of the epoch. This problem

can be expressed as follows:

Objective: Max Min{E[L1], . . . , E[Ln]}
subject to the constraints:

1.
∑n

i=1 sik = Nsl
in, ∀k ≤ N in

ep

2. sik ≥ 0 , ∀i ≤ n, ∀k ≤ N in
ep

IV. HARDNESS RESULT

We now investigate the optimization problem described in

the previous section. We first reformulate the problem as a

1244

combinatorial problem. (We assume that slots in an epoch are

numbered sequentially from 1 to Nsl
ep.)

Inputs. At the beginning of an epoch, the video of the ith

client has an initial lead of li = gi − oi seconds; i.e., it has

received the data corresponding to the F ∗ li frames after the

last played frame.

Let rij be the expected number of bits of video that can be

transmitted to client i in slot j. Thus, rij = E[IiA
k.R], when

slot j belongs to interval k. For ease of presentation, we also

call rij the rate of video i in slot j. Given the values of the

rates, a slot allocation for an epoch specifies for each slot, the

client to which the slot is allocated.

The Problem. In the Lead-based Multiple Video Transmission

(LMVT) problem, given the above input, we need to find a slot

allocation that maximizes the minimum lead among all videos

at the end of the epoch. (Here, ‘lead’ refers to the expected

playout lead described in the previous section.) We now show

that the following decision version of LMVT is NP-complete:

given a constant L, does there exist a slot allocation such that

every user has a lead of at least L seconds at the end of the

epoch? We show the NP-completeness by reduction from the

subset-sum problem [3]. Due to lack of space the proof of

NP-completeness is given in the full report [4].

Lemma 1: The decision version of the LMVT problem is

NP-complete.

The above lemma holds for even two videos. For a constant

number of videos, we have designed a pseudo-polynomial

time algorithm to optimally solve LMVT using dynamic

programming. However, this algorithm requires long running

time when the number of videos is high. Due to lack of space

the algorithm is presented in the full report [4].

Lemma 2: For a constant number of videos, there is a

pseudo-polynomial time algorithm to optimally solve LMVT.

V. A LEAD-AWARE GREEDY ALGORITHM

We now present a fast lead-aware greedy algorithm for the

LMVT problem. The algorithm is optimal for LMVT for the

case when the channel conditions remain constant within an

epoch, but different users may have different channel quality

(as shown in Lemma 3 below). Later in our simulations, we

numerically evaluate the algorithm for the general case when

the channel conditions of users may vary.

Lead-Aware Greedy Algorithm

Starting with the initial playout leads of the videos and all

the slots in the epoch, the greedy algorithm allocates slots one

by one (Figure 3) as follows. In each iteration, the algorithm

selects a video i with the minimum lead, such that video i has

the lowest id among the videos with the minimum lead. Then

the algorithm allocates client i a slot j in which client i has

the highest rate r among all available slots. Before moving to

the next iteration, slot j is marked unavailable for all videos,

and the lead of client i is increased corresponding to the

transmission of r bits to video i using the inverse playback

curve Φi (line 12 of Figure 3). The algorithm iterates until

there are no available slots in the epoch. (We would like to

1: function initialization
2: AvailableSlots← {1, . . . , Nsl

ep}; j ← 1
3: ∀ client i: leadi ← initial lead of i; Ii ← initial state distribution;

rcvbitsi ← 0
4: ∀ client i: compute the inverse playback curve Φi for this epoch
5: for 1 ≤ k ≤ N in

ep do {for all intervals in epoch}

6: while j < kNsl
in do {for all slots in interval}

7: rij ← E[IiAk.R]; j ← j + 1

8: function greedy algorithm
9: select a client with the lowest id i s.t. (∀q ≤ n, leadi ≤ leadq)

10: select a slot j s.t. (j ∈ AvailableSlots) and (∀x ∈
AvailableSlots, rij ≥ rix)

11: allocate slot j to client i; rcvbitsi ← rcvbitsi + rij

12: leadi ← initial lead of video i +
Φi(rcvbitsi)

F
13: remove j from AvailableSlots

Fig. 3. A greedy algorithm (executed at the beginning of each epoch)

remind the reader that the lead in this algorithm refers to the

expected value of the lead random variable.) Note that the

client with the minimum lead that is selected by the algorithm

may change between any two slot allocations. Hence, the

algorithm allocates the slots one by one even though each

client’s channel condition is modeled as remaining unchanged

within an interval.

To motivate our choice of the above greedy algorithm, we

now show that the algorithm is optimal for LMVT when each

client’s channel condition does not change within an epoch

(but different clients may have different rates).

Lemma 3: If the rate of each client does not change within

an epoch, the greedy algorithm yields an optimal solution for

LMVT.

Proof: As the rate of a client i does not change within

an epoch, each slot that is allocated to the client i provides

a constant number of bits, say ri. In this setting, the greedy

algorithm simply chooses the client i that has the lowest id

among the clients with the minimum lead, and selects the next

available slot and allocates it to i. The proof of optimality is

by induction on the number of allocated slots.

For the induction, we first introduce some notation and

observations. At any point in the execution of the LMVT

algorithm, the lead of a client can only change on receiving

sufficient slots for the client’s next video frame, and therefore,

the client’s lead can change only by a multiple of 1/F . For any

LMVT solution (slot allocation to clients) X , let lXi denote

the lead of client i in solution X , and let lXmin = mini{l
X
i }

be the minimum lead in X . Let sl(X, j) denote the number

of slots allocated to client j in solution X . Note that for a

solution Y and client k, if lXj > lYk then sl(X, j) > sl(Y, k),
on the other hand, if sl(X, j) ≥ sl(Y, k) then lXj ≥ lYk .

Base Case: If only 1 slot is available, the greedy algorithm

allocates it to a client with the minimum lead and therefore

the minimum lead is maximized.

Induction Step: Let us assume that the greedy algorithm

yields an optimal solution G for every d ≤ c slots. Let

G(c + 1) be the solution given by the greedy algorithm for

c+1 slots. We must prove that G(c+1) is optimal. To show

by contradiction, let us assume that there exists an alternate

solution S(c+ 1) 6= G(c+ 1) that is optimal for c+ 1 slots,

and S(c + 1) has a higher minimum lead than G(c + 1).

1245

Thus, l
S(c+1)
min > l

G(c+1)
min (i.e., l

S(c+1)
min ≥ l

G(c+1)
min + 1/F)

[Observation A0]. Let client i have the lowest id among the

clients with the minimum lead in G(c). After the (c + 1)th
slot is allocated to i by the greedy algorithm, we have one of

the following two cases:

Case 1: Minimum lead changes, i.e., l
G(c+1)
min > l

G(c)
min .

Let j be a client with the minimum lead in G(c+ 1), i.e.,

l
G(c+1)
min = l

G(c+1)
j (j need not be different from i). Then

l
S(c+1)
j ≥ l

S(c+1)
min > l

G(c+1)
min = l

G(c+1)
j [ObservationA]. Thus,

j is allocated at least one more slot in S(c+1) than in G(c+1).
Let us remove a slot from j in S(c+ 1) to obtain a solution

S(c) for c slots. Since we have only removed one slot from j

in S(c+ 1) to obtain S(c), l
S(c)
j ≥ l

S(c+1)
j − 1/F ≥ l

G(c+1)
j

[Observation B], and l
S(c)
min = min{l

S(c)
j , l

S(c+1)
min } ≥ l

G(c+1)
j

(where the last inequality follows from inequalities A and B).

Thus, we have l
S(c)
min ≥ l

G(c+1)
j = l

G(c+1)
min > l

G(c)
min which is a

contradiction since G(c) is optimal for c slots.

Case 2: Minimum lead remains unchanged at some value z,

i.e., l
G(c+1)
min = l

G(c)
min = z.

Observe that this can happen either when (a) i has not

received data constituting an entire frame and therefore its

lead has not advanced (b) i received data constituting one or

more frames and its lead advanced but there is another client

j such that l
G(c)
j = l

G(c)
i = z.

We first consider the case when z = 0. As l
S(c+1)
min ≥

z + 1/F > 0 (from A0), in S(c + 1) every client is

allocated enough slots for at least its first frame, Thus, for

each client j, the minimum number of slots needed for the

first frame, say sl′j , is less or equal to than sl(S(c + 1), j),
and therefore,

∑
j sl

′

j ≤ c+1. Now consider the execution of

the greedy algorithm until the minimum lead (over all videos)

becomes greater than 0. The algorithm selects a client j, in

the increasing order of their client id, and allocates client j
enough slots for its first frame, i.e., sl′j , and then moves to the

next frame. Therefore, given c+1 ≥
∑

j sl
′

j slots, the greedy

algorithm will allocate sufficient slots to each client for its first

frame, and hence, the allocation will have a minimum lead of

at least 1/F . Thus, l
G(c+1)
min ≥ 1/F , a contradiction.

We now consider the case when z > 0. Let us look back in

time to the point in the greedy algorithm’s execution when the

minimum lead in G has last changed. Let us assume that this

occurred δ slots back, i.e., l
G(c−δ)
min = z−1/F and l

G(c−δ+1)
min =

. . . = l
G(c+1)
min = z [Observation C]. Thus, in the solution

G(c + 1 − δ), there must have been a set of clients P each

with lead z.

Consider the period of execution of the greedy algorithm

while going from G(c + 1 − δ) to G(c + 1). In this period,

the algorithm must have assigned slots only to clients in P .

Also, no client in P would have received slots more than

what is required for its next one frame (because on receiving

slots required for one frame, the client’s lead increases, and it

does not remain a client with the minimum lead) [Observation

C1]. Let P1 be the set of clients in P that have received

sufficient slots for their next frame in this period, and P2

be the remaining set of clients in P (that have not received

enough slots for their next frame in this period). We note that

P2 cannot be an empty set, otherwise, the lead of G(c + 1)
would be higher than G(c+ 1− δ).

Let q be any client in P2. Then l
G(c+1)
q = z. Since, from

our initial assumptions, l
S(c+1)
min > l

G(c+1)
min = z, l

S(c+1)
q ≥

l
S(c+1)
min > z = l

G(c+1)
q [Observation D]. Also, for any client

j in P1, l
G(c+1)
j = z + 1/F (since it has received slots for

the next frame) [Observation D1]. As, l
S(c+1)
j ≥ l

S(c+1)
min >

l
G(c+1)
min = z, we have, l

S(c+1)
j ≥ z + 1/F = l

G(c+1)
j

[Observation E].

To show a contradiction, let us modify the solution S(c+1)
by removing δ + 1 slots to obtain a solution S(c − δ) for

c − δ slots as follows. For every client j in P , we remove

any sl(G(c + 1), j) − sl(G(c + 1 − δ), j) slots from its slot

allocation, and in addition, we remove one more slot from one

(arbitrarily chosen) client, say w, in P2. (The removed slots

add up to δ + 1 because δ slots were allocated by the greedy

algorithm to obtain G(c + 1) from G(c + 1 − δ).) We now

show that the minimum lead in S(c − δ) is higher than the

minimum lead in G(c − δ), thus resulting in a contradiction

(because G(c−δ) is optimal for c−δ slots). Let q be the client

with the minimum lead S(c − δ). We consider four possible

cases.

(1) q is not in P . In this case, no slots were removed from q
to obtain S(c− δ) from S(c+ 1), and so q had the minimum

lead in S(c + 1) as well. Therefore, l
S(c−δ)
q = l

S(c+1)
min >

l
G(c+1)
min = z > l

G(c−δ)
min (from A0 and C).

(2) q belongs to P1. Note that, since a process in P1
receives the minimum number of slots that is required for

its lead to be z + 1/F in G(c + 1) (from C1 and D1),

and l
S(c+1)
q ≥ l

S(c+1)
min ≥ l

G(c+1)
min + 1/F = z + 1/F (from

A0), q receives equal or more slots in S(c + 1) than in

G(c+1). Then, sl(S(c− δ), q) = sl(S(c+1), q)− (sl(G(c+
1), q) − sl(G(c + 1 − δ), q)) ≥ sl(G(c + 1), q) − (sl(G(c +
1), q)− sl(G(c+1− δ), q)) = sl(G(c+1− δ), q). Therefore,

l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F (where the

last inequality follows from C).

(3) q belongs to P2 but is distinct from w. Since q ∈ P2,

l
S(c+1)
q > l

G(c+1)
q (from D), and therefore sl(S(c + 1), q) >

sl(G(c + 1), q). Now, sl(S(c − δ), q) = sl(S(c + 1), q) −
(sl(G(c+ 1), q)− sl(G(c+ 1 − δ), q)) > sl(G(c+ 1), q))−
(sl(G(c+1), q)− sl(G(c+1− δ), q)) = sl(G(c+1− δ), q).

Therefore, l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F

(where the last inequality follows from C).

(4) q = w. Since q ∈ P2, l
S(c+1)
q > l

G(c+1)
q (from D), and

therefore sl(S(c + 1), q) > sl(G(c + 1), q). Now, sl(S(c −
δ), q) = sl(S(c + 1), q) − (sl(G(c + 1), q) − sl(G(c + 1 −
δ), q)) − 1 > sl(G(c + 1), q))− (sl(G(c+ 1), q)− sl(G(c+

1 − δ), q)) − 1 ≥ sl(G(c + 1 − δ), q). Therefore, l
S(c−δ)
q ≥

l
G(c+1−δ)
q = z > l

G(c−δ)
min = z−1/F (where the last inequality

follows from C).

As a special case of the above lemma, when the transmission

channel is of Constant Bit Rate (CBR), i.e., the rate of slots

do not change within an epoch or across the users, e.g., in a

1246

TABLE II
CIF VIDEO TRACE STATISTICS

Name of Mean bit Mean frame Standard
Video rate (Mbps) size (Kb) deviation of

frame size(Kb)

Star Wars IV 0.42 14 17.6

Lord of the Rings I 0.65 21.6 22.7

Tokyo Olypmics 1.06 35.4 39.4

Matrix I 0.41 13.4 17.1
Matrix II 0.61 20.2 25.5

Matrix III 0.52 17.1 20.5

NBC News 1.33 44 34

Silence of the
Lambs

0.44 14.7 22.2

wired link, the greedy algorithm is optimal.

Corollary 1: For a CBR channel, the greedy algorithm

yields an optimal solution for LMVT.

VI. EXPERIMENTAL SETUP

A. Trace-Driven Experiments

To demonstrate the efficacy of the greedy algorithm, we

perform trace-based experiments and report the results in this

section. Our evaluation uses two types of traces:

(i) VBR Video Traces describing the variation in the frame

sizes of videos for emulating video playouts.

(ii) User-Level Wireless Channel Traces describing the rates

received by various users over time to emulate real wireless

channel conditions.

We use the publicly available MPEG-4 VBR Video Traces

[5], [6] in our experiments. The videos are played out at a

constant frame rate of 30 frames per second. We perform

experiments with video traces encoded in Common Interme-

diate Format (CIF) and Quarter CIF (QCIF). All evaluation

is performed considering that a group of 8 different videos

is being streamed simultaneously to 8 different users over a

wireless channel. Unless mentioned otherwise, all results are

reported for CIF videos. A brief description of the 8 CIF video

traces used, is given in Table II. Detailed information about

the CIF and QCIF traces is available in [6].

User-Level Wireless Channel Traces describe the rates

achieved by different users in every interval of each epoch.

To generate these traces we collected signal strength measure-

ments over a (802.16e) WiMAX network deployed in WIN-

LAB at Rutgers University. During our trace collection, the

base station was made to continuously transmit data packets,

and signal strength (RSSI) was recorded; we performed the

measurement at the receiver (a laptop) under vehicular and

pedestrian mobility. A brief description of the parameters of

the WiMAX network used in our trace collection is given in

Table III. Due to lack of space, we present further details on

trace collection in the full report [4].

B. Scheduling Algorithm: Parameters

To evaluate our epoch-by-epoch multiplexing strategy based

on playout lead we need to specify the epoch duration,

interval size and the number of slots in an interval. To count

the number of stalls at the client, we assume the following

buffering scheme: if the client is not allocated enough data

in the current epoch to playout for the whole duration of the

TABLE III
WIMAX SYSTEM PARAMETERS FOR TRACE COLLECTION

Parameter Value

PHY OFDMA

Carrier Frequency 2.59 GHz

Channel Bandwidth 10 MHz

Frame duration 5 ms
Transmission power 30 dbm

Antenna model Sector

Fragmentation/Packing ON

ARQ OFF

epoch, the client stalls for the whole epoch. (We evaluate other

common buffering schemes in Section VII-B.)

Recall that in our multiplexing strategy, epochs are divided

into intervals, which are subdivided in slots (Figure 2(b)). Our

algorithm takes scheduling decisions based on the assump-

tion that the channel state changes significantly only from

one interval to the other. We use the mapping between the

Modulation and Coding Schemes (MCS) and the SINR values

for a WiMAX network provided in [7] to generate the Markov

Chain for modeling wireless channel state transitions from one

interval to the next. The transition matrix is then determined

by empirically computing the probabilities of transitioning

between these states from the traces collected. We choose an

interval duration to be 1 second in our experiments because

we want to capture channel variation due to path loss and

shadowing effects. The fast fading behavior of the channel

will average out for video frames (as their playout duration

is typically large). Due to lack of space, we present further

details in the full report [4].

For ensuring a smooth viewing experience, it is undesirable

to have small or large epochs. Small epochs will result in

playout variation at a short timescale (e.g. one long playout

delay followed by a long playout is preferable to many short

playout delays interleaved with short playouts). On the other

hand, large epochs will significantly delay playout. Hence, in

our experiments we consider epochs to be in the seconds’

timescale. In particular, we perform our experiments consider-

ing an epoch duration of 10 seconds. We note here that, after

about 40 steps (i.e. 40 seconds), the probability distribution

obtained from any starting state using our transition matrix

reaches close (5%) to the steady state distribution for both

vehicular and pedestrian mobility scenarios. Therefore, the

transition matrix does not reach steady state within an epoch,

and the matrix is useful for making scheduling decisions.

The main objective of our experiments is to demonstrate

that the proposed greedy algorithm is able to achieve its

goal of minimizing the number of stalls irrespective of the

epoch duration, interval size or number of slots per interval.

Determining the optimal epoch duration, the interval size or

the number of slots in an interval so as to maximize viewer

satisfaction is beyond the scope of this work.

VII. RESULTS

In this section we present and discuss the results for the

various experiments conducted. We compare the performance

of the greedy algorithm against two baseline approaches: the

equal-split and the weighted-split algorithms. In the equal-split

approach, we divide the number of slots available in every

1247

30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

Number of Slots in an Interval

A
ve

ra
ge

 N
um

be
r o

f S
ta

lls
 p

er
 V

id
eo

Equal Split

Greedy (Bits)

Greedy (Time)

Weighted Split

(a) Average number of stalls

30 40 50 60 70 80 90
0

10

20

30

40

50

60

Number of Slots in an Interval

St
an

da
rd

 D
ev

ia
tio

n

Equal Split

Greedy (Bits)

Greedy (Time)

Weighted Split

(b) Fairness

Fig. 4. Vehicular: Distribution of stalls with variation of wireless channel resource (slots) for CIF videos

25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

Number of Slots in an Interval

A
ve

ra
ge

 N
um

be
r o

f S
ta

lls
 p

er
 V

id
eo

Equal Split

Greedy (Time)

Weighted Split

(a) Average number of stalls

25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

Number of Slots in an Interval

St
an

da
rd

 D
ev

ia
tio

n

Equal Split

Greedy (Time)

Weighted Split

(b) Fairness

Fig. 5. Pedestrian: Distribution of stalls with variation of wireless channel resource (slots) for CIF videos

interval equally among all the users. In the weighted-split the

total number of slots in any interval is divided in proportion

to the mean bit rate of the individual video streams. While

allocating the slots, these two algorithms neither consider the

playout lead nor the wireless channel variability, and hence,

we expect them to be unfair compared to our greedy strategy.

To emphasize the importance of making scheduling deci-

sions based on playout lead, we also consider a variant of our

greedy algorithm from Section V (we denote our algorithm

from Section V by greedy-time). We consider a greedy-bit

algorithm which is similar to our greedy-time algorithm except

for one crucial aspect: it allocates the next slot to the video

with the minimum lead in terms of playout bits instead of

playout time. To avoid cluttering the plots with many lines,

we show only a few results for the greedy-bit algorithm. The

greedy-bit approach ignores the variability in the frame sizes

(i.e., burstiness) of a video with the result that it allocates fewer

resources to a video experiencing a burst, thereby unfairly

making it stall for longer durations.

A. Distribution of Stalls

In this subsection we study the distribution of stalls as a

function of the number of slots in an interval (keeping the

interval duration constant). The epoch duration is taken to be

10 seconds. Using the steady state probabilities of the Markov

model, one can compute the expected number of bits received

per slot. By varying the number of slots in an interval we are

essentially varying the total resource (in terms of bandwidth)

that is available at the base station.

1) Vehicular Mobility: Figure 4 presents the variation of

the average number of stalls for four multiplexing algorithms:

equal-split, weighted-split, greedy-bit and greedy-time. Ta-

ble IV provides the expected bit rate in the steady state for

different values of the number of slots per interval. In our

experiment, the mean bit rate of the aggregate of 8 CIF

videos is approximately 5.4Mbps. Thus, from Table IV, we

note that 34, 58 and 82 slots per interval correspond to the

wireless channel being severely under-provisioned, average-

provisioned and over-provisioned, respectively for the vehicu-

lar mobility scenario. In terms of the average number of stalls

per video, both the greedy algorithms perform better than the

equal-split and the weighted-split approaches, except when the

network is severely under-provisioned.

The under-provisioned case is not of practical interest as

the average number of stalls experienced is very high for all

algorithms. We, however, offer an explanation as to why the

equal-split performs the best in terms of average number of

stalls in this scenario. The main reason is that 2 videos in the

set of 8 videos considered, have mean bit rates much higher

than the others (Table II). In the equal-split approach, all video

streams are given the same number of slots and consequently a

significantly larger number of stalls is experienced by the high

bit rate videos in comparison to the low bit rate ones. There-

fore, although the average number of stalls is lower in equal-

split when compared to greedy-time, equal-split is unfair, a

fact evident from its large standard deviation for the under-

1248

TABLE IV
EXPECTED STEADY STATE BIT RATE FOR A GIVEN NUMBER OF SLOTS

Number of Slots Expected Bit-Rate (Mbps)

34 3.23

58 5.7

82 8.0

TABLE V
NUMBER OF STALLS PER VIDEO FOR AVERAGE-PROVISIONED NETWORK

Scheme Number of Stalls Number of Stalls
(Slots 64) (Slots 70)

Equal Split 10.25 7.25
Weighted Split 9.875 7.75

Greedy-time 2.75 1.875

provisioned case. To validate this observation, we performed

experiments excluding the two high bit rate videos and found

that the performance of the equal-split algorithm becomes

similar to greedy-time algorithm in the under-provisioned case,

with respect to the average number of stalls.

In the average and over-provisioned scenario, we observe

that the greedy algorithms outperform the other two ap-

proaches. With respect to fairness, the standard deviation of

the number of stalls shows that in terms of evenly distributing

the stalls among the videos, our greedy-time algorithm per-

forms significantly better than other algorithms. As discussed

earlier, we observe that the greedy-bit algorithm is unfair in

distributing the stalls (Figure 4), and so we will not consider

the greedy-bit algorithm any further.

To highlight the performance of the greedy-time algorithm,

we present results for the average number of stalls experienced

for the mildly over-provisioned case (64 and 70 slots) in

Table V. The mildly over-provisioned case is the scenario

of interest in practice and we observe that the greedy-time

algorithm reduces the number of stalls by a factor of 3 to

4 when compared to equal-split and weighted-split. Overall,

we observe that the greedy-time multiplexing algorithm gives

the best performance both in terms of reducing the average

number of stalls per video and evenly distributing the stalls

among the videos.

2) Pedestrian Mobility: Figure 5 shows the result for the

experiments conducted under pedestrian mobility. We observe

that the greedy-time algorithm again outperforms the equal

and weighted split algorithms in terms of average number of

stalls and fairness in the pedestrian mobility case as well. Due

to lack of space, in the remaining sections we only present the

results for the vehicular mobility case.

B. Sensitivity to Buffering schemes

Recall that in the results presented above, we have assumed

a client stall-recovery buffering scheme in which the client

stalls for the entire epoch when there is not enough buffered

data available for playout for the whole epoch. However, the

media players at the clients may have a different buffering

scheme. Following [2], we now consider the three common

buffering schemes:

• Fixed Buffering Delay (FBD): Once a stall occurs, re-

sume playout only after a fixed duration of time.

• Fixed Buffered Playout Data (FPD): Once a stall occurs,

resume playout only after a fixed amount of data is

received.

• Fixed Buffered Playout Time (FPT): Once a stall occurs,

resume playout only after the receiver has accumulated

enough data corresponding to a fixed playout duration.

We performed experiments to determine whether our algo-

rithm’s performance is sensitive to different client buffering

schemes. Figures 6(a), 6(b), and 6(c) show the variation

of the average number of stalls for the FBD, FPD and FPT

buffering schemes, respectively. In these simulations we again

considered 64 slots in each interval. In terms of playout stalls,

the greedy-time algorithm still outperforms the other schemes

irrespective of the buffering scheme adopted by the player

at the client. We also observed that the greedy-time algorithm

performs better in terms of evenly distributing the stalls across

the videos, but we omit the plot due to lack of space.

C. Sensitivity to Different Video Traces

We also conducted experiments with two sets of 8 QCIF

video traces, available from [5], [6]. We observed that, for

the QCIF video traces the trend obtained is similar to CIF

videos, with the greedy-time algorithm outperforming the

other approaches. Although the gains are not as prominent as

in the case of the CIF videos in terms of average number of

stalls, the greedy-time algorithm still significantly outperforms

in terms of fairness. Due to lack of space, we present the

results in the full report [4].

VIII. RELATED WORK

Although compression techniques reduce the mean bit rate

of video streams, it introduces considerable rate variability

over several time scales [8], [9]. Resource allocation for

VBR video streaming has been studied extensively for wired

networks. Smoothing the video transmission is one of the

primary techniques used for reducing the effect of bit-rate

variability. By pre-fetching some of the initial video frames

before their display times, smoothing techniques can minimize

the effect of variability in bit-rates under various resource

constraints, such as peak bit rate, client buffer size, and initial

playout delay [10], [11], [12], [13].

Rate allocation for multiple video streams is a well studied

problem [14], [15], [16], [17], [18]. [14] investigates minimiz-

ing rate variability when transmitting multiple video streams

given the client buffer size in a high-speed wired network.

In the RCBR service introduced in [15], the rate of each

video is renegotiated at the end of each interval to provide

statistical QoS guarantees. [16] presents a call-admission

scheme at a statistical multiplexer and bounds the aggregate

loss probability. A linear programming model is proposed

in [17] to compute a globally optimized smoothing scheme

to stream multiple videos. [18] derives bounds on the dropped

frames, delay, and buffer requirement that can be obtained

by statistically multiplexing VBR streams at the video server

by using a two-tiered bandwidth allocation. Although our

algorithm performs periodic rate allocation among multiple

video streams, our work differs from the above papers in

two crucial aspects: our primary objective of fairly managing

playout stalls across the videos, and our focus on time-varying

wireless channel.

1249

0 5 10 15 20
0

10

20

30

40

50

FBD (Duration in seconds)

A
ve

ra
ge

 N
um

be
r

of
 S

ta
ll

s
pe

r
V

id
eo

Equal Split

Greedy (Time)

Weighted Split

(a) Fixed Buffering Delay Strategy(FBD)

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

FPD (Buffer Size in Mb)

A
ve

ra
ge

 N
um

be
r

of
 S

ta
ll

s
pe

r
V

id
eo

Equal Split

Greedy (Time)

Weighted Split

(b) Fixed Buffered Playout Data (FPD)

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

FPT (Duration in seconds)

A
ve

ra
ge

 N
um

be
r

of
 S

ta
ll

s
pe

r
V

id
eo

Equal Split

Greedy (Time)

Weighted Split

(c) Fixed Buffered Playout Time (FPT)

Fig. 6. Different buffering schemes

Our work is closest to the work presented in [19], [2]

for managing stalls. Given the initial playout delay and the

receiver buffer size, [19] determines upper and lower bounds

on the probability of stall-free display of a video. [2] develops

an analytical framework to find the distribution of the number

of stalls while streaming a VBR video over a wireless channel.

However, unlike our work, both papers consider a single video

stream. The problem of transmitting multiple VBR videos

from a base station to mobile clients has been studied in [20],

but the work focusses on maximizing bandwidth utilization

while reducing energy consumption, and do not to address the

issue of stalling of video playout.

IX. CONCLUSION

In this paper, we have presented a multiplexing scheme to

manage stalls for multiple video streams that are transmitted

over a time-varying bandwidth-constrained wireless channel.

We considered a fairness criterion of maximizing the minimum

playout lead for managing stalls. We have assumed that all

server-to-client channels have the same transition matrix for

the Markov channel model, which might not hold in practice.

If some client has a poor channel condition for a protracted

period of time, then by maximizing the minimum playout lead,

the performance of the entire system may be degraded. Also,

our optimization problem is solved separately for each epoch,

which might not ensure long-term fairness across multiple

epochs. Future work will consider these issues in detail.

X. ACKNOWLEDGEMENT

The research work of the second and the last authors was

sponsored by US Army Research laboratory and the UK

Ministry of Defence and was accomplished under Agreement

Number W911NF-06-3-0001. The views and conclusions con-

tained in this document are those of the authors and should

not be interpreted as representing the official policies, either

expressed or implied, of the US Army Research Laboratory,

the U.S. Government, the UK Ministry of Defense, or the UK

Government. The US and UK Governments are authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation hereon. This material

is also based upon work supported by the National Science

Foundation under Grant No. CNS-1040781.

REFERENCES

[1] Cisco, “Visual Networking Index: Global mobile data traffic forecast
update, 2009-2014.”

[2] G. Liang and B. Liang, “Balancing interruption frequency and buffering
penalties in VBR video streaming,” in INFOCOM, 2007.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[4] P. Dutta, A. Seetharam, V. Arya, M. Chetlur, S. Kalyanaraman,
and J. Kurose, “On managing quality of experience of mul-
tiple video streams in wireless networks,” IBM Technical Re-
port, 2011, http://domino.research.ibm.com/library/cyberdig.nsf/papers/
A99FBFAE927167958525787E003DA7FE.

[5] G. Auwera, P. David, and M. Reisslein, “Traffic and quality characteri-
zation of single-layer video streams encoded with H.264/AVC advanced
video coding standard and scalable video coding extension,” IEEE
Transactions on Broadcasting, vol. 54, no. 3, 2008.

[6] P. Seeling, M. Reisslein, and B. Kulapala, “Network performance
evaluation with frame size and quality traces of single-layer and
two-layer video: A tutorial,” IEEE Communications Surveys and
Tutorials, vol. 6, no. 3, 2004, CIF Video traces availalble at
http://trace.eas.asu.edu/mpeg4/index.html and QCIF Video traces avail-
able at http://trace.eas.asu.edu/cgi-bin/main.cgi.

[7] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX:
Understanding Broandband Wireless Networking. Prentice Hall Com-
munications Engineering and Emerging Technologies Series, 2007.

[8] M. W. Garrett and W. Willinger, “Analysis, modeling and generation of
self-similar VBR video traffic,” in ACM SIGCOMM, 1994.

[9] A. R. Reibman and A. W. Berger, “Traffic descriptors for VBR video
teleconferencing over ATM networks,” IEEE/ACM Trans. Netw., vol. 3,
no. 3, 1995.

[10] S. S. Lam, S. Chow, and D. K. Y. Yau, “An algorithm for lossless
smoothing of MPEG video,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 24, no. 4, 1994.

[11] T. Ott, T. V. Lakshman, and A. Tabatabai, “A scheme for smoothing
delay-sensitive traffic offered to ATM networks,” in INFOCOM, 1992.

[12] N. B. Shroff and M. Schwartz, “Video modeling within networks using
deterministic smoothing at the source,” in INFOCOM, 1994.

[13] S. Sen, J. Dey, J. Kurose, J. Stankovic, and D. Towsley, “Streaming
CBR transmission of VBR stored video,” in SPIE Symposium on Voice
Video and Data Communications, 1997.

[14] J. D. Salehi, S.-L. Zhang, J. Kurose, and D. Towsley, “Supporting stored
video: reducing rate variability and end-to-end resource requirements
through optimal smoothing,” IEEE/ACM Trans. Netw., vol. 6, no. 4,
1998.

[15] M. Grossglauser, S. Keshav, and D. N. C. Tse, “RCBR: a simple and
efficient service for multiple time-scale traffic,” IEEE/ACM Trans. Netw.,
vol. 5, no. 6, 1997.

[16] Z.-L. Zhang, J. F. Kurose, J. D. Salehi, and D. F. Towsley, “Smoothing,
statistical multiplexing, and call admission control for stored video,”
IEEE Journal on Selected Areas in Communications, vol. 15, no. 6,
1997.

[17] H. Stern and O. Hadar, “Optimal video stream multiplexing through
linear programming,” in IEEE International Symposium on Information
Technology, 2002.

[18] J. Londono and A. Bestavros, “A two-tiered on-line server- side band-
width reservation framework for the real-time delivery of multiple video
streams,” BUCS-TR-2008-012, Boston University, 2008.

[19] G. Liang and B. Liang, “Effect of delay and buffering on jitter-
free streaming over random VBR channels,” IEEE Transactions on
Multimedia, vol. 10, no. 6, 2008.

[20] C.-H. Hsu and M. Hefeeda, “On statistical multiplexing of variable-bit-
rate video streams in mobile systems,” in ACM Multimedia, 2009.

1250

