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Push-to-Peer Video-on-Demand system:

design and evaluation
Kyoungwon Suh†, Christophe Diot, Jim Kurose†, Laurent Massoulié,

Christoph Neumann, Don Towsley†, Matteo Varvello

Abstract—We propose Push-to-Peer, a peer-to-peer
system to cooperatively stream video. The main
departure from previous work is that content is
proactively pushed to peers, and persistently stored
before the actual peer-to-peer transfers. The initial
content placement increases content availability and
improves the use of peer uplink bandwidth.

Our specific contributions are: (i) content place-
ment and associated pull policies that allow the
optimal use of uplink bandwidth; (ii) performance
analysis of such policies in controlled environments
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such as DSL networks under ISP control; (iii) a
distributed load balancing strategy for selection of
serving peers.

Index Terms—Peer-to-Peer networks, Video on
Demand service, push service, rateless coding, ran-
domized peer selection

I. INTRODUCTION

Over the past five years, there has been

considerable research in the use of peer-to-peer

networks for distributing both live [6], [28],

[21], [20] and stored [7], [2] video. In such

systems, peer interest plays the central role in

content transmission and storage - a peer pulls
content only if the content is of interest. Once

pulled content has been stored locally, the peer

may then in turn distribute this content to yet

other self-interested peers. Such a pull-based

system design is natural when individual peers

are autonomous and self-interested. However,

when individual peers are under common con-
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trol, for example in the case of residential home

gateways or set-top boxes under the control of

a network or content provider, a wider range

of system designs becomes possible.

The use of home gateways or set-top boxes

under the control of a network or content

provider is motivated by the fact that the they

meet much stronger reliability requirements in

terms of system and bandwidth availability. In

fact, many ISPs and content providers have

already deployed or have plans to deploy such

equipment (though they do not have peer-to-

peer functionality) in subscribers’ premises to

offer billable content services.

Our objective is to design a reliable VOD

architecture that relies on peer-to-peer transfer

as a primary means to provide high-quality

streaming. To the best of our knowledge, most

pull-based video streaming services either pro-

vide only low-quality video (i.e., less than

500Kbps) or use hybrid approaches in which

the role of P2P streaming is limited to reducing

the traffic load posed on their streaming infras-

tructure (e.g., ZATTOO [27] and JOOST [12]).

Though PPLIVE [20] has been successful in

providing video streaming without much in-

frastructure support, it has been reported that

it relies heavily on hosts in university net-

works [10].

In this paper, we investigate the design space

of a Push-to-Peer Video-on-Demand (VoD)

system. In such a system, video is first pushed

(e.g., from a content creator) to a population

of peers. This first step is performed under

provider or content-owner control, and can be

performed during times of low network uti-

lization (e.g., early morning). Note that as a

result of this push phase, a peer may store

content that it itself has no interest in, unlike

traditional pull-only peer-to-peer systems. Fol-

lowing the push phase, peers seeking specific

content then pull content of interest from other

peers, as in a traditional peer-to-peer system.

The Push-to-Peer approach is well-suited to

cooperative distribution of stored video among

set-top boxes in a DSL network, where the set-

top boxes themselves operate under provider

control. We believe, however, that the Push-to-

Peer approach is more generally applicable to

cases in which peers are long-lived and willing

to have content proactively pushed to them be-

fore video distribution among the cooperating

peers begins.

In this paper, we consider the design and

analysis of a Push-to-Peer system in a net-

work of long-lived peers where upstream band-

width and peer storage are the primary limiting

resources. We consider a controlled environ-

ment, with a set of always-on peers, constant

available bandwidth among the peers, and the

possibility of centralized control, assumptions

appropriate in the specific setting of a VoD
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system consisting of set-top boxes within a sin-

gle DSLAM [11] in a DSL network. DSLAMs

of providers such as France Telecom typically

connect around 800 DSL users. With this num-

ber of users, if 50 GigaBytes of storage is

available on each DSL gateway, it is possible

to store up to 5600 DVD-quality movies un-

der a single DSLAM. This number of movies

would be scaled down by a suitable factor for

the replicated placement schemes we advocate

later.

We begin by describing an idealized pol-

icy for placing video data at the peers dur-

ing the push phase - full striping - and its

consequent pull policy for downloading video.

We also consider the practical case in which

the number of peers from which a peer can

download is bounded, and propose a code-

based scheme to handle this constraint. We

demonstrate that these two placement policies

are optimal among policies that make use of

the same amount of storage per movie, in that

they maximize the demand that the system can

sustain.

We analyze the performance of these policies

(in terms of blocking under a no-wait blocking

model, and delay under a model in which

blocked requests are queued until they can

be served). Our performance models can be

used not only to quantitatively analyze system

performance but also to dimension systems

so that a given level of user performance is

realized - an important consideration if Push-

to-Peer is provided as a billable service by the

network provider. We also consider the case of

prefix caching at the peers.

The remainder of this paper is structured

as follows. In Section II, we describe the

controlled DSLAM setting, and the push and

pull phases in more detail. We also summarize

some of the important differences between the

Push-to-Peer and traditional peer-to-peer ap-

proaches for VoD. In Section III, we describe

two policies for placing video data at the peers

during the push phase. In Section IV we ana-

lyze the performance of the previous schemes

under both a blocked-calls-lost and blocked-

calls-queued model. We apply those analytical

results to address prefix sizing problem. In

Section V we propose a distributed job place-

ment algorithm and investigate its performance.

Section VI discusses related work. Section VII

concludes this paper.

II. NETWORK SETTING AND PUSH-TO-PEER

OPERATION

In this section, we describe the network

setting for the Push-to-Peer architecture and

overview the push and pull phases of operation.

We also describe our video playback model,

in terms of user requirements and performance

metrics.
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We will describe the Push-to-Peer architec-

ture in the context of a number of always-

on set-top boxes (STBs) or Residential Home

Gateways (RHGs) that collectively sit below a

DSLAM in a DSL network and cooperatively

distribute video amongst themselves.
The Push-to-Peer system comprises a con-

tent server, a control server, and boxes at the

user premises. The content server, located in

the content provider’s premises, pushes content

to the boxes during the push phase, as de-

scribed below. A control server is also located

in the content provider’s premise; it provides

a directory service to boxes in addition to

management and control functionalities. The

always-on STBs or RHGs reside at the cus-

tomer premises. Although there are important

technological and commercial differences be-

tween STBs and RHGs, we will refer to these

devices generically as boxes in the remainder

of this paper, since the crucial capabilities - the

ability to download, upload, and store video

under provider control - are common to both

STBs and RHGs.
Content distribution proceeds in two phases

in our Push-to-Peer system.

• Push Phase. During the push phase, the

content server pushes content to each of

the boxes. We envision this occurring peri-

odically, when bandwidth is plentiful (e.g.,

in the early AM hours), or in background,

low priority mode. After pushing content

to the peers, the content server then dis-

connects (i.e., does not provide additional

content), until the next push phase. A

crucial issue for the push phase is that

of data placement: what portions of which

videos should be placed on which boxes;

we address this problem in Section 3.

• Pull Phase. In the pull phase, boxes re-

spond to user commands to play content.

Since a box typically does not have all

of the needed content at the end of the

push phase, it will need to retrieve missing

content from its peers. While it is possible

for the boxes to proactively push content

among themselves (not in response to user

commands) we do not consider that pos-

sibility here. We assume that a user will

watch only one video at a time.

We make the following assumptions about

the DSL network, and the boxes at the user

premises:

• Upstream and downstream bandwidth.
We assume that the upstream bandwidth

from each box to the DSLAM is a con-

strained resource, most likely smaller than
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the video encoding/playback rate 1. We

assume that when a peer uploads video

to N different peers, the upstream band-

width is equally shared among those peers.

We also assume that video is transferred

reliably, either using FEC or ARQ. We

assume that the downstream bandwidth

is sufficiently large that it is never the

bottleneck when a peer downloads video

from other (possibly many other) peers

(instead, the upstream bandwidths at those

other peers are collectively the limiting

resource). We thus also assume that the

downstream bandwidth is larger than the

video encoding/playback rate.

• Peer storage. We assume that boxes have

hard-disks that can store content that is

pushed to the box during the push phase.

This content can then be uploaded to

other peers upon request, during the pull

phase. The disk may also store movie

1For example, AT&T lightspeed network and Verizon FiOS

allocate up to 1Mbps and 2Mbps upload bandwidth to each

home respectively. The video encoding rate for high-definition

(HD) video uses 6 Mbps bandwidth and the rate for standard-

definition (SD) uses 2Mbps bandwidth [5]. Clearly, the ag-

gregate upstream bandwidth of peers may be smaller than

the aggregate downloading bandwidth needed to support high-

quality p2p video streaming service. More importantly, the

maximum upstream bandwidth could be reliably achieved only

when the traffic is sent locally among the nodes connected by

a same switch such as DSLAM [5].

prefixes, that are used locally at the box

to decrease startup delay, as discussed in

Section 4. We note that when a box needs

to pull video from other boxes for playout,

this video must also be stored in a local

playout buffer, but we do not consider

the (relatively small) requirements of this

playout buffer here.

• Peer homogeneity. We assume that all

peers have the same upstream link band-

width and the same amount of hard disk

storage.

Each movie is chopped into windows of

contiguous data of size W . A full window

needs to be available to the user before it

can be played back. However a user can play

such a window once it is available, without

waiting for subsequent data. The window size

is a tunable parameter: the smaller the window

size, the smaller the startup delay for video

playback. Since the window is a unit of random
access to a video, the window also allows

us to support VCR operations such as jump

forward and jump backward. A viewer only

needs to wait until a single window to which

a jump operation is made is fully available.

Each window is further divided into smaller

data blocks that are stored onto distinct boxes.
In the sequel we will consider two modes

of operation. In the first mode, when a new

request to play a movie cannot be served at
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an aggregate speed that matches the encoding /

playback speed, the request is dropped. In the

second mode, the request is enqueued, until a

sufficient amount of bandwidth to play back the

video becomes available.

We refer to the first approach as the blocking
model, and to the second as the waiting model.
Depending on which model we consider, we

measure system performance using either the

request blocking rate or the mean startup delay.

III. DATA PLACEMENT AND PULL POLICIES

In this section we first propose the full-

striping data placement and code-based data

placement schemes. In contrast to full striping,

the latter allows a box to download a video

from a small number of boxes. This is useful

when the number of simultaneous connections

that a box can support is constrained. We then

state and prove optimality properties of both

schemes, in terms of the demands they can

accommodate. We consider both deterministic

and stochastic models of demands.

VCR operations such as jump forward, jump

backward, and pause can be supported by both

schemes though we assume sequential access

when those schemes and their corresponding

demand models are presented. In architectural

perspective, it is a simple modification 2. Since

the only resource constraint that our demand

models pose is the downloading rate, it does

not matter whether the window for a video

is requested in order in terms of time (i.e.,

sequential access) or they are requested out of

order (i.e., controlled random access required

by VCR operations).

We don’t consider the full striping to be

a practical scheme, since it is not resilient

to box failures. We present it to obtain the

benchmark performance bound of the push-to-

peer system, which is meant to be compared to

the performance of the code-based scheme.

In the remainder of the paper we assume that

there are M boxes and that each window of a

video is of size W .

A. Full Striping scheme

A full striping scheme stripes each window

of a movie over all M boxes. Specifically, every

window is divided into M blocks, each of size

W/M , and each block is pushed to only one

2The following modification should be made: (1) Each box

requires additional memory space of size equal to the size of a

single movie. The additional memory caches a full copy of the

video that a box is currently watching. (2) The window that a

jump operation is made to by the box is downloaded if a copy

of the window has not been cached in the additional memory

space. Otherwise, the box continues to download all windows

of the video in order until it has a full copy of the video in

the additional memory.
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box. Consequently, each box stores a distinct
block of a window. A full window is recon-

structed at a particular box by concurrently

downloading M − 1 distinct blocks for the

window from the other M − 1 boxes. Hence a

single movie download request generates M−1

sub-requests, each targeted at a particular box.

A box serves admitted sub-requests accord-

ing to the Processor Sharing (PS) policy, for-

warding its blocks of the requested video to re-

questing boxes. PS is an adequate model of fair

sharing between concurrent TCP connections,

when there is no round-trip time bias and the

bottleneck is indeed the upstream bandwidth.

We further impose a limit on the number

of sub-requests that a box can serve simul-

taneously. Specifically, to be able to retrieve

the video at a rate of Renc, one should re-

ceive blocks from each of the M − 1 target

boxes at rate at least Renc/M , where Renc is

the video encoding/playback rate. Hence we

should limit the number of concurrent sub-

requests being served by each box to at most

Kmax := bBupM/Rencc, where Bup is the

upstream bandwidth of each box. We envi-

sion two approaches for handling new video

download requests that are blocked because

one of the M − 1 required boxes is already

serving Kmax distinct sub-requests. In the first

approach, we simply drop the new request.

In the second approach, each of the M − 1

sub-requests generated by the new request is

managed independently at each target box. If

there are fewer than Kmax concurrent jobs

at the target box, then the sub-request enters

service directly. Otherwise, it is placed in a

FIFO queue local to the serving box, and waits

till it can start service.

B. Code-based placement

We describe a modification of full striping,

namely code-based placement, under which the

maximum number of simultaneous connections

that a box can serve is bounded by y, for

some y < M − 1. This scheme applies rateless

coding [16], [17]. A rateless code such as the

LT code [16] can generate an infinite number

of so-called coded symbols by combining the k

source symbols of the original content. These k

source symbols can be reconstructed with high

probability from any set of (1 + ε) ∗ k distinct

coded symbols. In practice, the overhead pa-

rameter ε falls in [0.03, 0.05], depending on the

code that we use [4], [17].

The code-based scheme we propose divides

each window into k source symbols3, and

generates Ck = (M(1 + ε)/(y + 1))k coded

3With rateless codes the greater the value of k, the greater is

the probability of reconstructing content with small overhead

[4]. Consequently, the symbol size should be as small as

possible, and therefore in our case symbol size should be equal

to packet size (i.e. MTU).
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symbols. We call C the expansion ratio, where

C > 1. For each window, the Ck symbols are

evenly distributed to all M boxes such that each

box keeps Ck/M = (1 + ε)k/(y + 1) distinct

symbols. A viewer can reconstruct a window

of a movie by concurrently downloading any

Cky/M distinct symbols from an arbitrary set

of y boxes out of (M − 1) boxes.

The code-based scheme is similar to full

striping in the sense that distinct (coded) sym-

bols are striped to all M boxes. However,

unlike full striping, only y boxes are needed

to download the video.

We now define the pull strategy used for

the code-based scheme. The maximum num-

ber, K ′

max, of sub-requests that can be con-

currently processed on each box to ensure

delay-free playback now reads K ′

max = b(y +

1)Bup/Rencc. Under the blocking model, a new

request is dropped, unless there are y boxes

currently handling less than K ′

max sub-requests.

In that case, the new request creates y sub-

requests that directly enter service at the y

boxes currently handling the smallest number

of jobs. Under the waiting model, each box

has a queue from which it selects sub-requests

to serve. Each new movie download request

generates M−1 sub-requests that are sent to all

other boxes. Upon receipt at a receiving box,

each sub-request either enters service directly,

if there are less than K ′

max sub-requests cur-

rently served by that box. Otherwise it is placed

in a FIFO queue specific to the box. Once a

total of y sub-requests have entered service, all

other M −1−y sub-requests are deleted. Thus

each request eventually generates only y sub-

requests.

C. Deterministic demands

We first consider a model where the demand

is specified by the maximum number of con-

current viewings, Nj , of each movie j, that the

system is expected to face at any given time.

The quality of a placement strategy is then

evaluated by determining the demand profiles

it can handle. Here a demand profile is {Nj}

such that no additional request can be served.

The demand profiles {Nj} can be thought of

as describing the maximum demand that can

be handled at a busy hour, or during a flash

crowd event.

We first consider full striping. One has the

following.
Proposition 1: Under full striping, a

sufficient condition for a demand profile
{Nj}j=1,... ,J to be sustained is

J
∑

j=1

NjRenc/M ≤ Bup. (1)

Under any scheme which stores a single copy
of each movie, a necessary condition for a
demand profile {Nj}j=1,... ,J to be sustained is

J
∑

j=1

NjRenc(1 − 1/M) ≤ MBup. (2)
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Proof: To see the sufficiency of (1), we

note that each particular viewing request is

broken into M − 1 sub-requests, mapped to

M − 1 boxes, and each such sub-request re-

quires a rate of (1/M)Renc in order to allow

delay-free playback. Thus the rate demand on

a particular box is at most
∑J

j=1
NjRenc/M . It

can therefore be met under Condition (1).
To establish the second part, let Aj,m denote

the amount of memory dedicated to movie j on
box m. By assumption,

∑M

m=1
Aj,m = TjRenc.

Let Tj denote the length of movie j in sec-
onds. Consider a random assignment of movie
requests to boxes, under the constraint that no
two requests come from the same box. Then
for a given box m, the rate at which it must
handle sub-requests is, on average, given by

J
∑

j=1

Aj,m

Tj
Nj(1 − 1/M).

Indeed, each request to view movie j has

probability (1− 1/M) of coming from another

box, in which case it creates a sub-request to

box m, that must be served at rate Aj,m/Tj

to allow delay-free playback. Summing this

expression over m yields the average total

service rate for the system. This also coincides

with the left-hand side of (2), which by as-

sumption is strictly larger than the total uplink

capacity MBup. Thus there must exist specific

assignments of viewing requests Nj to boxes

m that are infeasible, for otherwise the average

service rate would not exceed the total uplink

bandwidth.

Note that the conditions (1) and (2) cover

the cases where the ratio
∑

j NjRenc/(MBup)

is respectively less than one and greater than

M/(M − 1). The intermediate range is of

vanishing length when M is large. In this sense

we can claim that full striping is asymptotically

optimal among policies that store only one

copy of each movie.

Let us now turn to code-based placement.

Again, we assume that the amount of storage

dedicated to each movie j is CTjRenc, for some

common factor C > 1. We then have
Proposition 2: Under coding, a sufficient

condition for the demand profile {Nj}j=1,... ,J

to be sustained is

Renc





C

1 + ε
+

J
∑

j=1

Nj

(

1 −
C

M(1 + ε)

)



 ≤ MBup.

(3)

Under any scheme which stores at most
CTjRenc for movie j, a necessary condition for
demand profile {Nj}j=1,... ,J to be sustained is

Renc

J
∑

j=1

Nj(1 − C/M) ≤ MBup. (4)

Proof: Each request to view movie j gen-
erates y sub-requests, where y is related to C

via C = M(1+ε)/(y+1). Delay-free playback
is possible if each sub-request can be served at
a rate of Renc/(y + 1). A balanced assignment
of sub-requests to boxes can ensure that each
box deals with at most









1

M

J
∑

j=1

Njy









≤ 1 +
1

M

J
∑

j=1

Njy
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sub-requests. Thus demand is feasible if

Renc

y + 1



1 +
1

M

J
∑

j=1

Njy



 ≤ Bup.

Replacing y by its expression (1+ ε)M/C−1

in the above inequality yields Condition (3).

To establish the second part, consider a ran-

dom assignment of viewing requests to boxes.

Let Aj,m denote again the amount of storage

dedicated to movie j on box m. Because of the

constraint
∑

m Aj,m = CTjRenc, each request

to view movie j has on average a fraction C/M

of the required data stored locally on the box,

and thus requires on average a service rate of

Renc(1−C/M). Thus, the left-hand side of (4)

represents the average service rate required for

delay-free playback of all requests. When (4) is

not satisfied, this is larger than the total uplink

bandwidth MBup, and necessarily there exist

specific assignments of viewing requests to

boxes that cannot be satisfied, for otherwise the

average service rate needed would not exceed

the available uplink bandwidth.

D. Stochastic models of demand

Let us introduce the following stochastic

model for demand. Requests for movie j arrive

according to a Poisson process with rate νj .

Each request originates from box m with prob-

ability 1/M , for all m ∈ {1, . . . , M}. This last

assumption can be interpreted as follows. We

assume that no knowledge is available regard-

ing which user is more likely to request which

movie. We make this assumption for simplicity.

In practice we expect to have information about

user preferences, either communicated explic-

itly by users to the system, or inferred from

past usage behaviour.

We note that, although the Poisson arrival

model is standard in queueing theory, it is

not entirely realistic in the present set-up. In

particular one would not expect the same movie

to be viewed several times from the same box,

or several movies to be viewed simultaneously

from the same box. However, the model allows

to gain insight in the design challenges of

placement schemes. This is illustrated further

in the next section where we discuss prefix

caching strategies.

1) Optimality of full striping: Denote by Lj

the size of movie j in bytes, and by Aj,m

the amount of memory in bytes dedicated to

movie j on box m. Then the average size

of a download request for movie j is Lj −

(1/M)
∑M

m=1
Aj,m.

We shall assume that a single copy of each

movie is stored in the system, which can be

translated into the constraint
∑M

m=1
Aj,m = Lj .

It is natural to ask whether under such con-

straints, there exists a placement strategy that

is optimal with respect to the demand rates νj

that it can accommodate. The following shows
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that full striping is such an optimal placement

strategy:
Proposition 3: Assume that a single copy

of each movie is stored in the whole system.
Then under full striping data placement, and
for the waiting model, the system is stable (i.e.,
download times do not increase unboundedly)
whenever

J
∑

j=1

νjLj (1 − 1/M) < M ∗ Bup. (5)

Moreover, for any other placement strategy

specified by the Aj,m, the set of rates νj accom-

modated without rejection is strictly smaller

than that under full striping.
Proof: Note that for any placement policy

in which movies are stored only once, the work
arrival rate at a given box m is given by

ρ(m) := (1 − 1/M)

J
∑

j=1

νjAj,m. (6)

Under full striping, one has Aj,m = Lj/M .

Thus condition (5) is equivalent to the condi-

tion that the work arrival rate ρ(m) is less than

the service rate Bup of box m. This condition

does not depend on m, and is thus necessary

and sufficient for stability of the whole system.
Consider now a different placement strategy,

for which there exists a pair (j∗,m∗) such

that Aj∗,m∗ > Lj∗/M . For any demand rates

νj , j = 1, . . . , J , assume that there exists

a pull strategy that can stabilize the system

under such demand. Then necessarily, for all

m ∈ {1, . . . , M}, one has ρ(m) < Bup.

Summing these inequalities one obtains (5),

hence such demand can also be handled under

full striping.
Consider now a particular demand vector

where νj = 0 for all j 6= j∗, and

νj∗(1 − 1/M)Lj∗ = MBup − ε,

for some small ε > 0. Clearly this verifies
(5). However, the load placed on box m∗ is
precisely

ρ(m∗) = (1 − 1/M)νj∗Aj∗,m∗ .

By our choice of (j∗,m∗), we thus have that

ρ(m∗) > (1 − 1/M)νj∗Lj∗/M.

Thus for small enough ε, one must have

ρ(m∗) > Bup. Therefore, this box is in overload

and the system cannot cope with such demands,

while full striping can.

As shown in [23], this result can be further

extended to non Poisson arrivals, and strength-

ened by showing that at any given time, the

average work to be done at a particular box is

minimal under full striping.

2) Near-optimality of the code-based
scheme: We assume additional storage is used

per movie as described before. Specifically,

we assume that a total storage capacity

of C ∗ Lj is devoted to movie j, where

C = M ∗ (1 + ε)/(y + 1) is the expansion

ratio introduced in the previous section. The

solution based on encoding assumes that for

movie j, a total quantity of Aj,m ≡ C ∗ Lj/M

data is stored on each individual box m. This
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data consists of symbols, such that for any

collection of y + 1 = M/C boxes, each movie

can be reconstructed from the joint collections

of symbols from all these y + 1 boxes. We

then have the following proposition:
Proposition 4: By using the pull strategy

described in Section III-B, the system is stable
whenever the Poisson arrival rates νj verify

J
∑

j=1

νjLj [1 − C/((1 + ε)M)] < M ∗ Bup. (7)

Moreover, any scheme that uses C ∗Lj storage
for movie j cannot cope with demand rates νj ,
unless the following condition

J
∑

j=1

νjLj [1 − C/M ] < M ∗ Bup (8)

holds.

The proof relies on standard Lyapunov function

techniques, using as a Lyapunov function the

unfinished work in the system. It is omitted in

the present document for brevity. We only note

that the average amount of data that needs to

be downloaded for a request for movie j is

Lj(1−C/M) when the overall storage devoted

to movie j is CLj , and hence the left-hand

side of (8) is indeed the rate at which work

enters the system, while the right-hand side is

an upper bound on the service capacity of the

system. Thus with the assumed total storage

per movie, Condition (8) is indeed necessary to

ensure the existence of a pull strategy for which

the system is stable. The code-based scheme

is indeed nearly optimal, since Conditions (8)

and (7) coincide when the overhead parameter

ε tends to zero.

IV. PERFORMANCE ANALYSIS

A. Blocking model

We now propose simple models to predict

the blocking probability of the system when

requests are dropped (blocking model) when

resources are not available.
We first consider full striping. In the actual

system, the number of requests in progress

varies from box to box, because a request-

ing box does not place a request on itself.

Also, the overall service speed varies between

(M − 1)Bup and MBup depending on the sys-

tem state: when a single video download takes

place, it proceeds at speed (M − 1)Bup, while

an overall service rate of MBup is achieved

when sub-requests are served on all boxes.
However we consider simplified dynamics,

where the number of sub-requests is the same
on each box, and the total service capacity is
also constant. Specifically, we consider a total
service capacity of Btotal = MBup and assume
this is shared evenly among active downloads.
The total amount of data that needs to be
downloaded for the playback of movie j is
then taken to be Lj(1 − 1/M). We assume
movie j download requests arrive according to
a Poisson process with rate νj , and a maximum
number of concurrent downloads of Kmax =

bBtotal/[Renc(1−1/M)]c. These simplified dy-
namics correspond to the classical M/G/1/K/PS
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model, the blocking probability of which is
given by (see e.g. [14])

P I
b :=

(1 − ρ)ρKmax

[(1 − ρKmax+1)]
(9)

where

ρ =

∑J
j=1 νjLj(1 − 1/M)

Btotal
· (10)

To model the performance under coding

we make similar simplifying assumptions. We

again assume that each box handles the same

number of sub-requests, so that the system

state is captured by the total number of movie

download requests. However we account for

the fact that each movie request is served by

a maximum of y boxes, by taking the total

service rate, when there are n movie requests,

as the minimum of Btotal and nB̃ where B̃ :=

yBup.
Under such simplifying assumptions, the

system state evolves as a birth and death
process on {0, . . . , Kmax}, where Kmax =

bBtotal/[Rency/(y + 1)]c. The birth rate equals
ν =

∑

j νj in all states except Kmax, and the
death rate in state n is 4

min(n ∗ B̃, Btotal)

σ

where σ is the average job size,

σ = (1 + ε)
∑

j

(νj/ν)Lj(y/(y + 1))·

4We would indeed have a Markovian birth and death process

if job sizes were exponentially distributed, and with mean σ.

Insensitivity results on Processor Sharing systems, see e.g. [13]

guarantee that the rejection probability is insensitive to the

actual service time distribution and justify formula (11) for the

case of mixtures of deterministic service time distributions.

For this system the blocking probability, which
coincides with the steady state probability of
being in state Kmax, is

P II
b :=

ρk
1/k! ρKmax−k

0
∑k−1

i=0
ρi
1

i! +
ρk
1

k!
1−ρKmax−k+1

0

1−ρ0

(11)

where we have introduced the notations

ρ0 := νσ
Btotal

, ρ1 := ρ0
Btotal

B̃
,

k := bBtotal

B̃
c.

The derivation is a simple exercise, and is

omitted for brevity.

We plot the rejection rate for the proposed

data placement schemes in Figure 1. In the

simulation, we assume that the arrival of user

requests is a Poisson process and that the

probability that the request originates from

a specific box is 1/M . Note that the code-

based scheme pushes 4 copies of the video

to 128 boxes collectively. On the other hand,

the full striping scheme pushes only 1 copy of

the video. The x-axis indicates the normalized

arrival rate of user requests and the y-axis indi-

cates the rejection probability of user requests.

The rejection rates do not differ much be-

tween the two schemes. Perhaps surprisingly,

the full striping scheme consistently outper-

forms the code-based scheme, even though the

last scheme benefits from larger amounts of

data stored on each box. This is explained by

the fact that there is 5% coding overhead for

the code-based scheme and the full striping

scheme allows viewers to take advantage of
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the bandwidth from all 128 boxes regardless of

the number of served viewers, while the code-

based scheme constrains the number of boxes

that are concurrently used to 31.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0

0.02

0.04

0.06

0.08

0.1

0.12

Normalized arrival rate

Re
je

ct
io

n 
pr

ob
ab

ilit
y

 

 
analysis:full striping
sim:full striping (95% confidence interval)
analysis:coding scheme
sim:coding scheme (95% confidence interval)

Fig. 1. Rejection probability with M = 128, Video encoding

rate Renc = 2Mbps, Upstream bandwidth Bup = 1Mbps,

Size of Video L = 2Gbytes, Coding overhead ε = 0.05,

and Maximum number of simultaneous incoming connection

y = 31.

B. Full striping: waiting model

In this section we consider the performance

of the system under full striping and when

requests are allowed to queue up for resources.

As for blocking, we make simplifying assump-

tions to define a tractable performance model.

Specifically, we again assume that all boxes

handle the same numbers of sub-requests.

Thus, an incoming movie request is accepted

on all boxes, in which case it gets a fair share

of the overall system upstream bandwidth, pro-

vided there are fewer than Kmax jobs in the

system. Otherwise, the job is put in a single

FIFO queue. Again Kmax is determined to

ensure that effective download rate is at least

playback rate Renc.

We call this system the FIFO+PS service

system. While its performance is well under-

stood under the assumptions of Poisson job

arrivals and exponential service times, to our

knowledge its performance has not been anal-

ysed previously when the assumption of ex-

ponential service times is relaxed. One of our

contributions is to provide such an analysis, in

a heavy traffic regime.
Notations are as follows. Service capacity is

normalised to 1. Jobs arrive at instants of a
Poisson process with intensity ν`. Jobs are i.i.d.
with some fixed distribution; we denote by σ

a typical job service time. Kmax still denotes
the maximum number of jobs that can be
served concurrently. The index ` is introduced
to set the stage for the heavy traffic analysis.
Denoting by ρ` := ν`E(σ) the traffic intensity,
we shall assume that, as ` tends to infinity, the
load approaches 1 from below:

ρ` < 1, ` ≥ 1; lim
`→∞

ρ` = 1.

We shall further assume some scaling be-
haviour for parameter Kmax, namely the ex-
istence of a positive number m such that:

lim
`→∞

(1 − ρ`)Kmax = m.
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We then have the following result, the proof

of which can be found in [23]:
Theorem 1: Assume that the service time

distribution is a finite mixture of Exponential
distributions. Denote by Z ` the number of jobs
in steady state in the `-th system. One then has
the following convergence, for all t > 0:

lim
`→∞

P

(

Z` >
t

1 − ρ`

)

=



















e−m−2(t−m)σ2/σ2

if t > m,

e−t if t ≤ m.

(12)

Furthermore, denoting by W ` the waiting time
of a job in steady state in the `-th system, one
has the following convergence, for all t ≥ 0:

lim
`→∞

P
(

(1 − ρ`)W
` > t

)

= e−m−2tσ/σ2

. (13)

In particular the probability of not waiting
satisfies

lim
`→∞

P(W ` = 0) = 1 − e−m. (14)

Remark 1: Although we have established

the theorem only for the case of service times

that are mixtures of exponential distributions,

we expect it to hold more generally, and in

particular to apply to the present setup where

service time distributions are concentrated on

a finite set of values.
We now indicate how to use this result. For
given system parameters, we approximate the
distribution of the waiting time of an arbitrary
job as follows:

P(W ` > t) ≈ e−(1−ρ`)[Kmax+2tσ/σ2]. (15)

We plot the waiting time distribution for
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Fig. 2. Waiting time distribution for full striping with

M = 128, Video encoding rate Renc = 2Mbps, Upstream

bandwidth Bup = 1Mbps, Size of Video L = 2Gbytes and a

normalized load of ρ = 0.98

full striping, obtained by simulation, and the

corresponding analytical prediction from Equa-

tion (15) in Figure 2. While the shapes are simi-

lar, the match is not perfect. We observed better

matches when instead of deterministic service

times, we used exponential service times in

simulations. We suspect that the heavy traffic

approximation becomes accurate only at very

high loads when service time distributions are

not exponential.

C. Application: sizing prefixes

We now show how to use the previous results

to further optimize content placement assuming

extra storage is available. We again assume

there are J movies, all encoded at a constant bit

rate Renc, and denote by Lj the size of movie
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j.

For movie j, we assume that a prefix of

size Pj is stored locally on each box. This

ensures that each user can play back the first

tj := Pj/Renc seconds of movie j without

downloading extra content. We further assume

that encoded symbols are created and placed on

each box so that for each movie j, its remainder

can be reconstructed from the symbols present

at any y + 1 boxes.
Let D denote the memory space available

on each box. The above described placement
strategy will be feasible provided the following
constraint is satisfied:

J
∑

j=1

Pj + (Lj − Pj)/(y + 1) ≤ D. (16)

Denote by νj the rate of requests for movie
j. The amount of movie j that needs to be
downloaded for the playback is then

σj =
y

y + 1
(Lj − Pj). (17)

Indeed, the prefix of size Pj is stored locally, as
well as a fraction 1/(y+1) of the remainder of
the movie. The normalised load on the system
is thus:

ρ =

∑J
j=1 νjσj

Btotal
. (18)

1) Blocking probabilities: We first con-

sider performance under blocking. The maxi-

mum number of concurrent jobs is Kmax =

bBtotal/[Rency/(y + 1)]c. The blocking prob-

ability is given by (9) in the particular case

where y + 1 = M , that is to say under full

striping. This probability is then minimized by

making the load as small as possible.

Using linear programming, one can easily

see that, to minimize the load ρ as given by (18)

and (17) under memory constraints (16) one

should aim to cache locally the most popular

movies in full.
2) Waiting times: We now assume that re-

quests are queued and scheduled according to

FIFO rather than dropped when the number of

concurrent requests in service equals Kmax.

The evaluations (15) give us an approxima-

tion of the distribution of the delay W between

request initiation and download beginning. The

actual delay can be reduced because playback

can start tj seconds before download starts.
This yields the following expression for the

average delay D̄j experienced by requests for
movie j:

D̄j = E [max(0, W − tj)]

=
∫ ∞

tj
(x − tj)

2σ(1−ρ)

σ2
e−(1−ρ)[Kmax+2xσ/σ2]dx.

We thus obtain the formula

D̄j =
σ2

2σ(1 − ρ)
e−(1−ρ)[Kmax+2tjσ/σ2]. (19)

We use a simple example to illustrate

how a fixed amount of memory in a box can

be optimally allocated to preload prefixes of

movies depending on their relative popularities.

Figures 3 and 4 show plots of the mean waiting

times Dj obtained from Formula (19). In each

case, there are two movies, and there is a
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Fig. 3. waiting time against prefixes balanced popularity

(ν1 = ν2 = 0.99, Renc = Btotal = 1, L1 = L2 = 1,

P1 + P2 = 1, y � 1)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

fraction of prefix to movie 1

M
ea

n 
wa

itin
g 

tim
e 

(s
ec

on
ds

)

 

 
Movie 1
Movie 2

Fig. 4. waiting time against prefixes distinct popularity (ν1 =

0.99∗4/3, ν2 = 0.99∗2/3, Renc = Btotal = 1, L1 = L2 = 1,

P1 + P2 = 1, y � 1)

fixed amount of memory that can be used for

prefixes of either or both movies. In Figure 3,

the popularities of both movies are same. In

this case, the figure indicates that both movies

should get prefixes of equal sizes. Note that

for equal popularities, varying prefixes does not

change the normalized load ρ. Also, it does

not affect the average service time σ̄. It would

appear then that one movie would benefit from

having a larger prefix. This is however not

the case, because unbalanced prefixes lead to

a large variance in the service times and thus

a large second moment σ2.

In Figure 4, movie 1 is twice as popular

as movie 2. The figure indicates that it is

beneficial to both movies to allocate the prefix

memory to movie 1. By storing large prefixes

for movie 1, we reduce the system load ρ, and

this is the leading effect.

V. RANDOMIZED JOB PLACEMENT

In the previous sections we considered the

case where all boxes are centrally coordinated.

With such an assumption the job placement

strategies, i.e. the decision where to place and

serve the sub-requests of a job, are optimal.

However, in practice a centralized system does

not scale in the number of boxes. In this

section we therefore propose a distributed load

balancing strategy for the selection of serving

peers. Although we only consider the case that

upstream bandwidth is not variable here for the

interest of space, we also consider the case that

upstream bandwidth is dynamically changing

in our technical report [23]. More specifically,

we propose resource overbooking scheme to
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hedge against upstream bandwidth diversity

and dynamic job migration scheme to address

upstream bandwidth fluctuations. Details can

be found in [23].

The strategy we consider for initial job

placement is as follows. When a download

request is generated, d distinct boxes are ran-

domly chosen from the overall collection of

M boxes. The load, measured in terms of fair

bandwidth share that a new job would get, is

measured on all probed boxes. Finally, sub-

requests are placed on the y least loaded boxes

among the d probed boxes, provided that each

of the y sub-requests gets a sufficiently large

fair bandwidth share, i.e. larger than or equal

to (y/(y+1))Renc with our previous notation. If

any of the least loaded boxes cannot guarantee

such a fair share, then the request is dropped.

We assume as before that each box has a

fixed overall upstream bandwidth of Bup. Thus

the maximum number of sub-requests on each

box is Kmax = bBup/[y/(y + 1)Renc]c.
Many results are available on the perfor-

mance of related randomized load balancing
schemes. If we assume requests arrive accord-
ing to a Poisson process with rate λ ∗ M/y,
no rejection (Kmax = ∞), y = 1 (requests
generate a single sub-job), and exponential job
size distribution, we have exactly the model
analyzed by Vvedenskaya et al. [26] (see also
Eager et al. [8] and Mitzenmacher et al. [19]).
For this system they show that, in the large M

limit, in steady state the fraction φi of all M

boxes that contain at least i jobs is given by

φi = ρ
di

−1

d−1 ,

where ρ is the normalized load on each box.

The system we consider differs by the fact

that there are several sub-jobs, and by the pos-

sibility of job rejection. It is however amenable

to a similar analysis. We now determine fixed

point equations that characterize the fraction of

boxes holding a given number of sub-jobs in

equilibrium. We do not claim the derivation is

rigorous, but instead validate it by simulations.
The heuristic derivation proceeds as follows.

Fix i ∈ {0, . . . , Kmax}. For a new request,
denote by X<i (respectively Xi, X>i&<Kmax

and XKmax
) the number of sampled boxes

with less than i jobs (respectively i, more
than i and less than Kmax, and Kmax). The
vector of these four quantities follows a multi-
nomial distribution with parameters d and
(p<i, pi, p>i&<Kmax

, pKmax
), where

p<i :=
∑

j<i

pj , p>i&<Kmax
:=

∑

i<j<Kmax

pj .

Denote by Fi(u, v, w, z) the probability that
this multinomial distribution puts a job on
the vector (u, v, w, z). Its dependence on the
parameters pj is not made explicit to simplify
notation. Denote by Gi the expected number of
boxes which previously had i jobs and receive
a new one from such a new request. This can
be written as

Gi =
∑

u,v,w,z

Fi(u, v, w, z) min(v, max(0, y−u)) 1z≤d−y.
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Indeed the factor 1z<d−y retains only
terms in the summation where all sub-jobs
can get enough bandwidth, and the term
min(v, max(0, y − u)) counts the number of
least loaded boxes that currently have i jobs.
We obtain the following heuristic differential
equation using the notations:

d

dt
Mpi = M(λ/y)(Gi−1 − Gi) − µM(pi − pi+1).

The rationale is that new boxes with i jobs

appear at rate Mλ/yGi−1 because of extra

jobs being placed on boxes previously holding

i− 1 jobs, and also at rate µMpi+1 because of

departures from boxes previously holding i+1

jobs. The rationale for the departure rates is

similar.
The fixed point equation for pi is then

obtained by setting the left-hand side of the
previous equation to zero. Introduce now the
notation

λi :=
λ

y

Gi

pi
·

The fixed point equations may then be written
as

pi+1µ = λipi, i = 0, . . . , Kmax − 1.

Since
∑Kmax

i=0
pi = 1, we obtain in turn

p0 = 1

1+
∑Kmax

i=1
[(

∏i−1

j=0
λj)/µi]

(20)

pn =
∏n−1

j=0
λj

µn−1 p0, n = 0, . . . , Kmax. (21)

Note that the parameters λi in the right-hand
sides of these expressions depend on the pi’s
themselves. The fixed point equations (20), and
(21) cannot be solved explicitly. However we
obtain a numerical approximation by applying

iteratively the function specified by (20), and
(21) on an initial guess for the pi’s. We ob-
served fast numerical convergence of the itera-
tions in our experiments. Once the parameters
pj are determined, the rejection probability is
determined according to the formula

preject =

d
∑

i=d−y+1

(

d

i

)

pi
Kmax

(1 − pKmax
)d−i.

Figure 5 shows the numerical solutions and
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Fig. 5. Numerical solutions and simulation results for rejection

probability using the proposed load balancing scheme

simulation results we obtain for distinct choices

of parameters (y, d) for varying normalized

load ρ = λ/µ, and setting Kmax to 3. Here, the

simulation results is obtained using M = 50

boxes. The numerical solutions match reason-

ably well the simulation results. We believe that

the fixed point equations we just described are

accurate in the large M limit.

More importantly, we observe that even at

normalised loads close to 100%, the rejection
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probabilities remain small: below 15% when

only two additional boxes are probed and

down to 10% when three additional boxes are

probed.

VI. RELATED WORK

Peer-to-peer networks for streaming video on

the Internet have generated a lot of interest

recently [6], [28], [20], [25]. However, most

of the efforts have focused on efficient tree

and mesh construction, assuming the upstream

bandwidths of peers are larger than video play-

back rate. Under this assumption p2p systems

can scale to support arbitrarily large numbers

of clients. In contrast, we can cope with uplink

bandwidths smaller than video playback rate, a

condition that holds in most access networks,

particularly DSL. More recently, Dana et al. [7]

and Tewari et al. [24] proposed BitTorrent-

based live streaming service under the same

assumption of limited upstream bandwidth. In

both proposals, the upstream bandwidth limi-

tation is overcome by the assistance of server-

based stream delivery in their proposed sys-

tems. However, the Push-to-Peer system does

not rely on content servers except in the push

phase.

Load balancing strategies have also been

investigated in the context of job scheduling

in distributed systems and more general bins

and balls problems [8], [18], [19]. To the best

of our knowledge, all of the proposed load bal-

ancing schemes are targeted to balance loads of

independent jobs. On the contrary, we address

the problem of balancing the load imposed by

sub-requests from a job, that should be co-

scheduled ideally. More recently, load balanc-

ing in the case of bulk arrivals of jobs has been

investigated by Adler et al. [1], however, the

balancing decision is made per job rather than

per set of jobs arriving together. Our proposed

scheme collectively balances all sub-requests

for a job.

Another related area of work is the data

placement and pull scheme for video streaming

services. Several methods have been proposed

in the literature [15], [3], [21], [22]. Partic-

ularly, random duplicated assignment strategy

of data blocks and mirroring are proposed for

VoD servers by Korst [15] and Bolosky et

al. [3] respectively to address the problem of

disk failure. However, we use a code-based

placement that addresses the problem of box

failures. The prefix prefetching schemes for

p2p video streaming [21], [22] require up-

stream bandwidth of a peer to be larger than

video playback rate, an assumption we do not

make.

Rateless coding schemes have been proposed

by [4], [17], [16]. While these works dis-

cuss how to use the codes to download files

using multicast/broadcast transmissions [4] or
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using peer-to-peer networks [17], none of these

works address the usage of coding for video

streaming or video-on-demand. Other work

proposed the use of network coding to acceler-

ate file download in peer-to-peer networks [9]

or to ameliorate VoD for p2p [2]. Because of

the push-phase, our approach does not require

that peers serve content that they downloaded

previously from other peers. Therefore network

coding is not needed in our context.

Our work is different from a streaming ser-

vice provided by multiple servers in the fol-

lowing aspects. First, unlike multiple stream-

ing servers, the boxes are also clients in

our case. The implication is that by placing

more data, the bandwidth requirements become

lower, which is not the case in the multi-server

streaming. Secondly, in case of a multi-server

streaming service, a client is redirected to a set

of streaming servers, which are under complete

control of the provider and well-connected

through high-speed networks. However, in our

work, the client chooses a set of best peer nodes

in distributed fashion, i.e., using the proposed

randomized peer selection algorithm.

VII. CONCLUSION AND FUTURE WORK

We proposed Push-to-Peer, a novel peer-to-

peer approach to cooperatively stream video

using push and on-demand pull of video con-

tents. We showed the theoretical upper perfor-

mance bounds that are achieved if all resources

of all peers are perfectly pooled, and present

the placement (namely full-striping and code-

based scheme) and pull policies that achieve

those bounds. However, perfect pooling is only

possible with global knowledge of system state,

which in practice is not feasible. Therefore, we

proposed and analysed a randomized job place-

ment algorithm. We are currently developing a

prototype system.

We plan to do a more systematic analysis

of placement schemes that take into account

movie popularity. The non-uniform size of pre-

fixes preloaded for different movies makes the

use of processor sharing scheduling less effec-

tive, because the deadline for downloading a

window is determined by the size of preloaded

prefix. To address this issue, we plan to adopt

Earliest Deadline First (EDF) scheduling poli-

cies developed for multiprocessors.
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