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ABSTRACT  

 
We investigate the bootstrapping of policy-based access 
control in a deny-by-default mission-critical MANET. In 
the absence of any initial policies, a deny-by-default 
system fundamentally prevents all traffic flow. 
Providing all policies prior to deployment assumes 
advanced knowledge of all possible future scenarios – 
an assumption that is often unrealistic in practice; 
furthermore, policies may change over time. Thus, 
alternatively, network nodes can be initialized with a 
small set of initial policies (which we refer to as an 
axiomatic set of policies) that allow them to obtain 
additional policies, update outdated policies, and 
establish connectivity with neighboring nodes – a 
process that we refer to as bootstrapping. We identify a 
set of axiomatic policies for bootstrapping a deny-by-
default system, propose a bootstrap protocol for 
neighbor link setup, and study how policies can be 
propagated within the MANET. Safety and liveness of 
the proposed bootstrap protocol are formally proved via 
model checking in SPIN. We also analyze the tradeoff 
between network vulnerability (the fraction of time that 
a node’s policy is out-of-date) and the overhead 
incurred by different policy-dissemination approaches. 

 

I. INTRODUCTION 

In a deny-by-default system [3][6][13], policy rules 
explicitly define the various actions that system 
components are permitted to take. In the absence of a 
known, explicit policy allowing a given action, that 
action is implicitly disallowed, i.e., is denied by default. 
In a deny-by-default network, for example, policy may 
dictate which nodes can forward data, control, and 
policy traffic to which other nodes. A deny-by-default 
network architecture [14][2][1][16] contrasts sharply 
with today’s Internet architecture, in which, for 
example, incoming datagrams are forwarded by default 
by Internet routers unless blocked by firewalls or ingress 
filters. A deny-by-default architecture provides 
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enhanced security by limiting the set of possible actions 
to those that are explicitly allowed. 

A crucial challenge in deny-by-default architectures is 
the manner in which network nodes obtain policy 
information. In the case of static policy, a node may be 
pre-configured with the entire set of policies it will 
need.  This assumes advanced knowledge of all possible 
future scenarios and the set of policies that will be 
needed – an assumption that is often unrealistic in 
practice. An alternative is to provide nodes with just 
enough initial policy that they later can obtain (i.e., 
bootstrap) any additional policy that they may need. In 
the case that policy changes dynamically, nodes must be 
able to obtain additional new policy and refresh stored, 
out-of-date policy.  

In the paper, we investigate the bootstrapping of 
policy-based access control in a deny-by-default mission 
critical MANET. We identify a small set of initial 
policies (which we refer to as an axiomatic set of 
policies) that allows a node to obtain additional policies, 
update outdated policies, and establish a set of 
capabilities that allow nodes to establish neighbor 
relationships amongst themselves in a manner that is 
consistent with policy. We propose a bootstrap protocol 
for neighbor link setup and prove its correctness (safety 
and liveness) properties using model checking. 
Additionally, in the case of dynamic policy changes, we 
study how policy updates can be propagated within the 
MANET. Using simple queuing models, we analyze the 
tradeoff between network vulnerability (the fraction of 
time that a node’s policy is out-of-date) and the 
overhead incurred by different dynamic policy-
dissemination approaches. 

The rest of this paper is organized as follows. Related 
work is discussed in Section II. In Section III, we present 
preliminaries regarding policy in a deny-by-default 
network and identify an axiomatic set of policies needed 
to bootstrap neighbor relationships in such a network. In 
Section IV, we propose the bootstrap protocol for 
neighbor link setup and present the formal verification 
of safety and liveness of the protocol via SPIN [9]. Then 
in Section V, we analyze MANET vulnerability for 
three different policy distribution architectures, and 
insights/guidelines are provided to nodes in MANET to 
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meet desired levels of security and performance in the 
bootstrapping process. The paper concludes in Section 
VI. 

II. RELATED WORK 

An off-by-default, IP-layer access control protocol is 
proposed in [2] to protect the Internet from malicious 
traffic. [16] proposes an architecture based on 
capabilities for limiting the impact of DoS attacks on the 
Internet. DoS attacks are limited by requiring that traffic 
sent to a receiver must first be explicitly allowed by that 
receiver; a network-layer connection is needed for 
obtaining this permission first. [1] argues against using 
capabilities, as they are themselves susceptible to denial-
of-capability attacks. Our work differs from these works 
in that we study a policy-based deny-by-default access 
control for MANETs and the process for bootstrapping 
this system. The STRONGMAN architecture [12] is a 
policy-based access control system, but not based on a 
deny-by-default principle. Regarding policy-based 
MANETs, DRAMA [7] studies policy management, and 
[15] studies policy-based interactions (focusing on 
policy specification) in dynamic wireless networks. 
None of these studies address the bootstrapping 
problem. [10] proposes three approaches to policy 
dissemination. Our work on policy dissemination (once 
neighbor relationships have been established and routing 
is in place), differs from previous works in that policy 
dissemination itself is subject to policy, and our analysis 
quantifies the tradeoff between vulnerability and 
performance in dissemination.  These results can, in 
turn, be used for policy configuring and management. 
IPsec [11] allows establishing a security relationship 
among nodes, but not for the purpose of policy. To 
bootstrap security associations for routing in MANETs, 
[18] presents a technique (independent of any trusted 
security service) to implement a secure binding between 
an IP address and a key. [19] discusses various problems 
in bootstrapping coalition MANETs, in order to identify 
novel solution methodologies. 

III. PRELIMINARIES FOR NETWORK POLICY 

In this section, we briefly introduce the definitions of 
network policies for a deny-by-default network and 
identify an axiomatic set of policies used in the 
bootstrap protocol outlined in the following section. 
Note that the focus of this paper is not on policy 
specification nor the enforcement of policy within the 
data plane; instead we focus on the process of signaling 
between neighboring nodes, in a manner that is 
consistent with policy, to establish neighbor 
relationships. Once neighbor relationships have been 

established, routing and other higher-level network 
functions can then be put in place.  

We define a policy rule as consisting of four 
components: the Proposition (P), the Policy Duration, 

the Policy Refresh Interval, and the Policy Source (S). 
Proposition (P) is a conditional test on an element such 
as a data message, internal node state, or identity (of the 
node itself or a neighbor) and evaluates to either TRUE 
or FALSE. For example, a P may be written as 
(Node=Alice) & (BeaconSrc=Bob), where Node is the 
node at which the proposition is being tested, and 
BeaconSrc stands for the beacon-sending node. The 
Policy Duration ([ts; te]) specifies the start and end time 
of a policy. The Policy Refresh Interval (tr) specifies an 
optional maximum duration that a policy is allowed to 
be considered viable without receiving confirmation that 
the policy has not changed. The Source (S) policy 
component indicates the originator of the policy. For 
ease of exposition, we will not consider policy duration, 
the policy refresh interval or the policy source when 
considering the bootstrap protocol; see [17] for the more 
general case; we will consider these aspects of policy in 
Section V when we study policy propagation. 

Since our focus is on the bootstrap process, we assume 
that policies are consistent, and that a mechanism (e.g., 
[12]) exists for determining the integrity, validity and 
non-repudiation of any policy that a node receives. 

 

Axiomatic Policies. Axiomatic policies are defined as 
the initial set of policies that are installed a priori and 
allow a deny-by-default system to establish neighbor 
relationships. The key challenge here will be to define a 
small set of primitive policy elements (e.g., whether a 
node is allowed to advertise its existence via beacon 
messages, whether it can receive additional policy from 
a given neighbor).  Once neighbor relations have been 
established, higher-level functionality, such as routing 
can be established. Axiomatic policies do not preclude a 
node from being initialized with additional policies for 
performance reasons. The existence and size of this set 
of axiomatic policies are key measures of the 
practicality of deny-by-default security. We conjecture 
the following policies form the axiomatic set: 
• PolicySource policy, a rule that defines which nodes are 

authorized sources of new policies and policy 
updates/refresh. We assume that all nodes are preloaded 
with a set of trusted policy servers, and our policy integrity 
assumption prevents false policy insertion/edits. 

• MayBeacon policy specifies whether a node is allowed to 
advertise its existence. 

• MayShare policy of a node with respect to another node 
specifies whether this node may share a policy with the other 
node. 
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• PolicyAccept policy of a node specifies the set of nodes 
from which this node may accept policy updates. Note that 
our assumption of policy consistency assures that nodes 
having the same policies arrive at common policy state. 

We next demonstrate that these policies enable any 
two nodes to set up a neighbor link via our proposed 
bootstrap protocol. 
 

IV BOOTSTRAPPING A NEIGHBOR LINK 

In this section, we propose a bootstrap protocol that 
allows two nodes to establish a neighbor relationship 
when that relationship, and the process for bootstrapping 
that relationship, is consistent with policy. The bootstrap 
protocol only relies on the axiomatic policies defined in 
the previous section.  When two nodes “establish a 
neighbor relationship”, we mean that the final state of 
both nodes is that they have each agreed that they can 
send and receive messages to/from each other.  

Although the axiomatic policies are required to 
bootstrap the system, they do not define whether a 
particular neighbor relationship is allowed. Therefore, a 
node will typically also be initialized with policy that 
defines a set of one or more nodes with whom it is 
allowed to run the bootstrap protocol. If this initial set is 
empty, a node will be unable to join the network or 
obtain additional policy unless there is a path between 
this node and a policy server.  If the set is non-empty, 
the node may run the bootstrap protocol with these 
nodes, possibly obtaining new policies that would then 
allow it run the bootstrap protocol with yet other nodes. 
The OkNeighbor policy defines whether a particular 
neighbor relationship is allowed. The OkNeighbor 
policy of node A with respect to node B is TRUE if B is 
allowed to be a neighbor of A. As will be illustrated, this 
policy is not axiomatic; it can be obtained by running 
the bootstrap protocol.  

In our proposed bootstrap protocol, two nodes that 
encounter each other can exchange OkNeighbor policies 
(if allowed by their axiomatic policies MayShare) even 
without establishing a neighbor relationship; if their 
OkNeighbor policy with respect to each other are both 
TRUE, then they are able to additionally establish a 
neighbor link between themselves.  

A. Bootstrap Protocol  

We now formally describe the bootstrap protocol. 
Consider two nodes meeting in a MANET, that are 
situated such that each can hear the other’s 
transmissions. Without loss of generality, let T denote 
the node under study, and X denote the other node just 
encountered. Let us now consider T’s bootstrap with X 
(symmetrically, X goes through the same process).  

We use a Finite State Machine (FSM) [5] to describe 

the internal state transitions of node T. As shown in 
Figure 1, there are four internal node states: active 

beacon (A), passive (P), half-open (H), and full-open 

(F). If a node has no OkNeighbor policy or an undefined 
OkNeighbor policy with respect to the other node, it can 
acquire this policy through message exchange with the 
other node (if carrying the policy), even though these 
two nodes have yet to establish a neighbor relationship. 
When a node has a valid and affirmative OkNeighbor 
(evaluates to TRUE) policy with respect to the other 
node, it starts its neighbor link setup process with the 
other node. The notations and terms used in the 
bootstrap protocol and FSM are given in Table I and 
Figure 2. The actions and transitions in each state of 
node T are described as follows. 

Active Beacon state (A). 

• There are three actions in state A: send a beacon and after 

each beacon, clear the NP and SP flags. Note that if NP is 

set to 1, then the beacon sent will contain a policy request; 

if SP is set to 1, the beacon sent will contain policy for the 

other node. 

• When T sends a beacon, it remains in state A if nothing else 

is changed.  

• When T receives any message from node X and T has no or 

undefined OkNeighbor policy with respect to X, the 

following actions are taken: (i) if received message has 

policy for T, verify it and make a decision to accept it or 

not based on its axiomatic PolicyAccept policy; (ii) T sets 

its internal NP flag to 1 if its OkNeighbor policy remains 

undefined (not received in the previous step); (iii) if the 

TABLE  I    NOTATIONS FOR BOOTSTRAP PROTOCOL 

Notations for states in Finite State Machine 

T this node 
X the other node 

X→T if in state, means this node knows X has this node 
as neighbor 

T→X if in state, means this node has X as its neighbor 

A active beacon state 
P passive listening state 
F full-open connection state  
H half-open connection state 

Messages (note, policy can be attached to Bcn or Nbr, and policy 
request (NP) can be attached to Bcn ) 

Bcn(X) existence beacon sent by node X  

Nbr(T→X) neighbor setup request message from T to X  

NbrA(T→X) ACK to Nbr(X→T)  

NP(T→X) T requests policy from X 

Policy(T) policy for node T  

Other notations used in state diagram for protocol 

NP need policy flag, either 0 or 1 
SP share policy flag, either 0 or 1 
NP=1 if in state, means the next sent message should 

contain policy request; 
if in message, means the message asks for policy  

SP=1 if in state, means the next sent message should 
contain policy for the other node; 
if in message, means the message contains policy 

Bcn message any message has Bcn 
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received message also contains a policy request and T’s 

axiomatic policy MayShare with respect to X evaluates to 

TRUE, then set the SP flag, which will cause the next sent 

beacon message to contain policy for X; (iv) return back to 

state A. 

• Three transitions leave state A. If T receives any beacon 
messages from X and T’s OkNeighbor policy evaluates to 
TRUE, it enters half-open state H and sets the SP flag if the 

received message contains a policy request and if its 
MayShare evaluates to TRUE. If T receives a message 
containing a neighbor setup request and its OkNeighbor 
policy evaluates to TRUE, then it sends an ACK and enters 
the full-open state F. If T’s axiomatic policy MayBeacon 
becomes FALSE, then it enters passive state P. 

Passive state (P) 
• There are three transitions out of this state. If T’s 

MayBeacon policy becomes TRUE, it enters state A. If T 
receives any beacon from X and its OkNeighbor policy 
evaluates to TRUE, it enters the half-open state H. If T 
receives any message containing a neighbor setup request 
and its OkNeighbor policy evaluates to TRUE, then it 
sends out an ACK message NbrA and enters the full-open 
state F.  

• If T does not have valid OkNeighbor policy with respect 
to node X, T ignores all messages from X. 

Half-open state (H)  
• When entering this state, T sends out a neighbor setup 

request to node X and clears the SP flag.  

• If T receives any message containing policy request from 

X and T is allowed to be a neighbor of X and T’s 

MayShare policy with respect to X evaluates to TRUE, 

then T sets its SP flag and returns back to the half-open 

state H. Note that since SP is set, its next neighbor setup 

request message should be attached with policy for X. 

• If T receives any message containing a neighbor setup 

request and its OkNeighbor policy evaluates to TRUE, it 

sends out an ACK message, NbrA, and enters the full-

open state, F. If T receives an ACK to its previously sent 

neighbor setup request and its OkNeighbor evaluates to 

TRUE, then it enters full-open state. There are a number 

of neighbor maintenance rules that can lead node T to 

other states. They are given in Table II. They deal with 

 
Figure 2. FSM Notation 

Figure 1. Finite State Machine for Bootstrap Protocol 

TABLE  II 
NEIGHBOR MAINTENANCE RULES FOR A NODE 

Notations for states in state diagram 

Nbr timeout & MayBeacon is TRUE enter state A 
Nbr timeout & MayBeacon is FALSE enter state P 

OkNeighbor is FALSE & MayBeacon is TRUE  enter state A 
OkNeighbor is FALSE & MayBeacon is FALSE enter state P 
OkNeighbor undefined & MayBeacon is TRUE set NP flag, 

enter state A 
OkNeighbor undefined & MayBeacon is FALSE enter state P 

Comments: Nbr timeout  means if this node does not hear from 
the other node in a pre-specified time interval, then this node 
thinks that the link with the other node is broken. OKNeighbor 

becomes undefined or invalid once it is expired. 
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various cases where either the neighbor link setup request 

message timeouts, or OkNeighbor policy expires, or its 

MayBeacon policy with respect to the other node becomes 

FALSE. In all these cases, T enters either passive or active 

beacon states to restart the neighbor link establishment 

process. 

Full-open state (F) 

• In this state, node T periodically exchanges messages with 

node X for upkeep purposes. T stays in this state if it 

receives an ACK to its neighbor link setup request and its 

OkNeighbor policy with respect to the other node is still 

TRUE.   

• Similar to the half-open state, this node also follows the 

neighbor maintenance rules shown in Table II that will 

lead this node out of state F. 

 

Example. We now illustrate the operation of our 

bootstrap protocol. Consider two nodes A and B that 

encounter each other and are part of a larger MANET.  

Both A and B are preconfigured with MayBeacon equal 

to TRUE. Node A carries B’s valid OkNeighbor with 

respect to A, and vice versa. But neither one has its own 

valid OkNeighbor with respect to the other node. Thus, 

in order to set up a neighbor relationship, they need to 

first receive their OkNeighbor policies from each other. 

Figure 3 shows the neighbor relationship establishment 

process, which executes as follows.  
1. Node A actively beacons. Its beacon is received by B. 

Since B has no or invalid OkNeighbor policy with respect 

to A and B’s MayBeacon is TRUE, B sends a beacon with 

policy request (the NP flag set to 1) to A.  

2. When A receives B’s beacon, it finds that it can share 

policy with B but does not have an OkNeighbor policy 

with respect to B. A thus sends a beacon to B, with its own 

policy request and a policy for B.  

3. When B receives its policy from A, it verifies, accepts, and 

evaluates the policy. The evaluation of the received policy 

sets B’s OkNeighbor policy (with respect to A) to TRUE. 

Since B’s MayShare with respect to A is TRUE, it 

responds to A’s policy request by attaching a policy for A 

to its next beacon sent to A.  

4. When A receives its policy from B, it verifies, accepts, and 

evaluates the policy. The evaluation of the received policy 

sets A’s OkNeighbor policy (with respect to B) to TRUE. 

A remains in active beacon state, and sends a beacon to B.  

5. Since B’s OkNeighbor with respect to A is TRUE now, B 

sends a neighbor link setup request to A when it receives a 

beacon from A, and then B enters the half-open state. 

6. Since A’s OkNeighbor with respect to B is TRUE now, A 

accepts B’s neighbor link setup request, sends a neighbor 

ACK message (NbrA) to B, and enters full-open state.  

7. B enters the full-open state when it receives NbrA from A. 

The neighbor relationship of A and B is now established.    

B. Formal verification of bootstrap protocol 

In order to verify the correctness of our bootstrap 

protocol, we implemented it in SPIN [9], a powerful 

model checker for formal verification of distributed 

software systems. We built a formal model of our 

protocol using the PROMELA (PROcess MEta 

LAnguage) language [9]. In order to verify the 

correctness of a protocol, SPIN exhaustively searches 

the entire state space of communicating nodes and 

message channels. We allow message errors or loss in 

transfer in a deterministic manner. In Figure 4, we show 

representative SPIN code1 for a loop-back transition (the 

top left-most transition shown in Figure 1).  This piece 

of code shows that once a node (with missing or invalid 

OkNeighbor policy) receives a message, it performs a 

sequence of actions (with conditional tests) and returns 

to its initial state. Depending on the values of the NP 

and SP flags, a node may attach a policy request or 

policy to a message, indicated by message variable name 

containing PolicyReq or Policy in Figure 4.   

We have formally verified the correctness (safety and 

liveness) of our bootstrap protocol. Specifically, for 

safety, we have shown that the protocol is deadlock free, 

and that if the OkNeighbor policy of either one of the 

two nodes evaluates to FALSE, then the nodes will 

never be able to set up a neighbor relationship. 

Regarding liveness, we have proved the following 

claims. First, if at least one of two nodes do not have a 

valid OkNeighbor policy with respect to the other node, 

and they are not connected via neighbor link, and both 

nodes can actively beacon, and they have affirmative 

 
1 Complete SPIN code is given in technical report [17]. 

 
Figure 3. Sample path of bootstrap protocol execution. V stands for 
the verification of received message. 
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MayShare policy with respect to each other, and they are 

allowed to accept policy from each other, then 

eventually they both can receive their OkNeighbor 

policies even without a neighbor relationship. Second, if 

the OkNeighbor policies of both nodes evaluate to 

TRUE with respect to each other, and at least one of 

them can actively beacon, then eventually they will 

establish a neighbor relationship with each other. 

V. POLICY PROPAGATION 

Once nodes have established a neighbor relationship 

via our bootstrap protocol, they may receive updated 

policies that have been propagated through the network. 

A deny-by-default network is completely bootstrapped 

once this propagation process is complete. Here we 

assume that routing protocols are in place and focus on 

the manner in which policy updates are propagated. 

Before a node receives the updated policy, it is 

considered vulnerable. We define vulnerability as the 

expected fraction of time that a node is vulnerable. This 

value is used as a security metric for evaluating policy 

propagation. We define the signaling overhead as the 

fraction of time that the network is used for policy 

propagation − during which the channel cannot be used 

to transfer other data. It is used as a performance metric. 

A longer policy propagation time means a longer 

vulnerable period. We assume that the policy 

propagation time is given (a function of underlying 

routing protocol, mobility, etc), and focus on evaluating 

three basic policy dissemination architectures. Our 

analysis can help designers of access control to set the 

policy refresh interval tr and helps a node to determine 

how frequently it should pull policies from servers in 

order to meet certain levels of security and performance.  

The three basic policy dissemination architectures are 

periodic refresh only, pull, and push. In periodic refresh 

only, a policy server periodically broadcasts policies at 

interval tr, regardless whether policies are updated or 

not. In pull, nodes actively and periodically request 

policies from policy servers. In push, a policy server 

pushes policy to other nodes whenever an update (or 

change) is available. Intuitively, nodes are less 

vulnerable if policies are more frequently refreshed 

through the network, but more policy beacons in the 

network leads to higher signaling overhead and less 

available network capacity for other data transfer. A 

security-concerned user might be inclined to pull 

actively while sacrificing some performance, whereas a 

performance-concerned user might simply rely on the 

default periodic refresh to receive policies. Our analysis 

below provides insights into this tradeoff and presents 

design guidelines. 

We have conducted analysis via simple queuing 

models to quantify the tradeoff between network 

vulnerability and the overhead incurred by the three 

dynamic policy-dissemination approaches. We solve for 

vulnerability and signaling overhead, under the 

assumption that all time intervals (such as policy refresh 

from server, policy update, and policy pull from nodes) 

follow some given probability distributions or empirical 

distributions, and allow policy messages to be randomly 

lost in the network. For details, see [17].   

We now present some numerical evaluation results 

based on the analysis given in [17]. First, we fix the 

average policy change (or update) interval, and fix the 

policy fetching time (or propagation time) Kf at one 

thousandth of policy change interval. We vary the policy 

 

Figure 4. Sample SPIN code written in PROMELA for modeling the 
protocol. This piece of code describes a loop-back transition of active 
beacon state of a node. Variables prefixed with bcn represent beacon 
messages. Each policy variable (prefixed with Policy) can take three 
values: 0 means no such policy; 1 means the policy evaluates to 
FALSE; 2 means the policy evaluates to TRUE. For instance, 
PolicyOkNbr=0 means that this node does not have valid 
OkNeighbor with respect to the other node. PolicyMayBcn=2 means 
that this node can actively beacon. “mysend” is a procedure for 
sending messages in wireless channel, and “msg_rcv” is a procedure 
for receiving messages from wireless channel. We use bit variables 
anymsg, reqmsg, and polmsg to indicate whether any message has 
been received, the received message contains policy request, and the 
received message contains policy, respectively. We use bit variable 
policy_ok_nbr_flag to indicate whether the received and accepted 
OkNeighbor policy evaluates to TRUE or not. Note that this variable 
represents a decision made by some other system-wide component, 
not by the bootstrap protocol. 
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refresh interval in the periodic refresh only architecture. 

In the  pull architecture, we set the number of pulls per 

policy refresh interval to be 10. Results are shown in 

Figure 5. We can make the following observations: 1) 

vulnerability decreases with increased signaling 

overhead, so clearly there is a security vs. signaling 

tradeoff; 2) the pull architecture provides significantly 

decreased vulnerability over periodic refresh only with a 

ten-fold signaling overhead increase; 3) the push 

architecture’s performance depends only on the policy 

change rate, and provides a vulnerability lower bound.  

Next, we let the policy fetching time, Kf, be 

exponentially distributed and let nodes actively pull 

policies in each refresh interval. Our results in [17] 

show that a longer average fetching time leads to a 

higher vulnerability and larger overhead, but in general, 

pull achieves lower vulnerability and overhead. In 

addition, we consider that policy message can be lost in 

the network, and that the policy server re-sends policy 

message after a certain timeout when loss occurs. Our 

results in [17] show that a larger loss probability leads to 

a higher vulnerability and larger overhead, and in 

general pull achieves lower vulnerability and overhead. 

We also observe that low loss probabilities (less than 0.2 

in our case) do not significantly affect vulnerability and 

signaling overhead.  

In sum, our vulnerability analysis of policy 

propagation in the bootstrapping process quantifies the 

tradeoff between security and performance, and shows 

that a good choice of pull frequency can effectively 

achieve low vulnerability and high performance. More 

generally, our analysis provides a technique for policy 

servers and users to achieve their desired levels security 

and performance.  

VI. CONCLUSION AND FUTURE WORK 

To address the challenges of bootstrapping deny-by-

default access control in MANETs, we have identified a 

set of axiomatic policies and proposed a bootstrap 

protocol for establishing secure neighbor relationships 

among nodes. The safety and liveness of the protocol 

were formally verified via model checking. We have 

also analyzed three basic policy dissemination 

architectures in the bootstrapping process and quantified 

the tradeoff between security and performance. Our 

current bootstrap protocol is designed for establishing a 

neighbor link by using axiomatic policies. As a future 

work, we will expand this protocol to safely and 

efficiently bootstrap the whole network, and to control  

policy propagation. We will implement and experiment 

with our bootstrap protocol in real deny-by-default 

MANETs. We will apply and verify our vulnerability 

analysis in practice and with empirical data. 
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Figure 5. (a) expected vulnerability when Kf is fixed. (b) 
expected signaling overhead when Kf is fixed. 

 


