

1 of 7

ABSTRACT

We investigate the bootstrapping of policy-based access
control in a deny-by-default mission-critical MANET. In
the absence of any initial policies, a deny-by-default
system fundamentally prevents all traffic flow.
Providing all policies prior to deployment assumes
advanced knowledge of all possible future scenarios –
an assumption that is often unrealistic in practice;
furthermore, policies may change over time. Thus,
alternatively, network nodes can be initialized with a
small set of initial policies (which we refer to as an
axiomatic set of policies) that allow them to obtain
additional policies, update outdated policies, and
establish connectivity with neighboring nodes – a
process that we refer to as bootstrapping. We identify a
set of axiomatic policies for bootstrapping a deny-by-
default system, propose a bootstrap protocol for
neighbor link setup, and study how policies can be
propagated within the MANET. Safety and liveness of
the proposed bootstrap protocol are formally proved via
model checking in SPIN. We also analyze the tradeoff
between network vulnerability (the fraction of time that
a node’s policy is out-of-date) and the overhead
incurred by different policy-dissemination approaches.

I. INTRODUCTION

In a deny-by-default system [3][6][13], policy rules
explicitly define the various actions that system
components are permitted to take. In the absence of a
known, explicit policy allowing a given action, that
action is implicitly disallowed, i.e., is denied by default.
In a deny-by-default network, for example, policy may
dictate which nodes can forward data, control, and
policy traffic to which other nodes. A deny-by-default
network architecture [14][2][1][16] contrasts sharply
with today’s Internet architecture, in which, for
example, incoming datagrams are forwarded by default
by Internet routers unless blocked by firewalls or ingress
filters. A deny-by-default architecture provides

This material is based upon work under a subcontract #069153 issued by

BAE Systems National Security Solutions, Inc. and supported by the Defense
Advanced Research Projects Agency (DARPA) and the Space and Naval
Warfare System Center (SPAWARSYSCEN), San Diego under Contract No.
N66001-08-C-2013.

enhanced security by limiting the set of possible actions
to those that are explicitly allowed.

A crucial challenge in deny-by-default architectures is
the manner in which network nodes obtain policy
information. In the case of static policy, a node may be
pre-configured with the entire set of policies it will
need. This assumes advanced knowledge of all possible
future scenarios and the set of policies that will be
needed – an assumption that is often unrealistic in
practice. An alternative is to provide nodes with just
enough initial policy that they later can obtain (i.e.,
bootstrap) any additional policy that they may need. In
the case that policy changes dynamically, nodes must be
able to obtain additional new policy and refresh stored,
out-of-date policy.

In the paper, we investigate the bootstrapping of
policy-based access control in a deny-by-default mission
critical MANET. We identify a small set of initial
policies (which we refer to as an axiomatic set of
policies) that allows a node to obtain additional policies,
update outdated policies, and establish a set of
capabilities that allow nodes to establish neighbor
relationships amongst themselves in a manner that is
consistent with policy. We propose a bootstrap protocol
for neighbor link setup and prove its correctness (safety
and liveness) properties using model checking.
Additionally, in the case of dynamic policy changes, we
study how policy updates can be propagated within the
MANET. Using simple queuing models, we analyze the
tradeoff between network vulnerability (the fraction of
time that a node’s policy is out-of-date) and the
overhead incurred by different dynamic policy-
dissemination approaches.

The rest of this paper is organized as follows. Related
work is discussed in Section II. In Section III, we present
preliminaries regarding policy in a deny-by-default
network and identify an axiomatic set of policies needed
to bootstrap neighbor relationships in such a network. In
Section IV, we propose the bootstrap protocol for
neighbor link setup and present the formal verification
of safety and liveness of the protocol via SPIN [9]. Then
in Section V, we analyze MANET vulnerability for
three different policy distribution architectures, and
insights/guidelines are provided to nodes in MANET to

Honggang Zhang, Brian DeCleene, Jim Kurose, Don Towsley

BOOTSTRAPPING DENY-BY-DEFAULT ACCESS CONTROL FOR

MOBILE AD-HOC NETWORKS

978-1-4244-2677-5/08/$25.00 ©2008 IEEE

 Suffolk University BAE Systems Univ. of Massachusetts Amherst
 hzhang@ieee.org brian.decleene@baesystems.com {kurose, towsley}@cs.umass.edu

2 of 7

meet desired levels of security and performance in the
bootstrapping process. The paper concludes in Section
VI.

II. RELATED WORK

An off-by-default, IP-layer access control protocol is
proposed in [2] to protect the Internet from malicious
traffic. [16] proposes an architecture based on
capabilities for limiting the impact of DoS attacks on the
Internet. DoS attacks are limited by requiring that traffic
sent to a receiver must first be explicitly allowed by that
receiver; a network-layer connection is needed for
obtaining this permission first. [1] argues against using
capabilities, as they are themselves susceptible to denial-
of-capability attacks. Our work differs from these works
in that we study a policy-based deny-by-default access
control for MANETs and the process for bootstrapping
this system. The STRONGMAN architecture [12] is a
policy-based access control system, but not based on a
deny-by-default principle. Regarding policy-based
MANETs, DRAMA [7] studies policy management, and
[15] studies policy-based interactions (focusing on
policy specification) in dynamic wireless networks.
None of these studies address the bootstrapping
problem. [10] proposes three approaches to policy
dissemination. Our work on policy dissemination (once
neighbor relationships have been established and routing
is in place), differs from previous works in that policy
dissemination itself is subject to policy, and our analysis
quantifies the tradeoff between vulnerability and
performance in dissemination. These results can, in
turn, be used for policy configuring and management.
IPsec [11] allows establishing a security relationship
among nodes, but not for the purpose of policy. To
bootstrap security associations for routing in MANETs,
[18] presents a technique (independent of any trusted
security service) to implement a secure binding between
an IP address and a key. [19] discusses various problems
in bootstrapping coalition MANETs, in order to identify
novel solution methodologies.

III. PRELIMINARIES FOR NETWORK POLICY

In this section, we briefly introduce the definitions of
network policies for a deny-by-default network and
identify an axiomatic set of policies used in the
bootstrap protocol outlined in the following section.
Note that the focus of this paper is not on policy
specification nor the enforcement of policy within the
data plane; instead we focus on the process of signaling
between neighboring nodes, in a manner that is
consistent with policy, to establish neighbor
relationships. Once neighbor relationships have been

established, routing and other higher-level network
functions can then be put in place.

We define a policy rule as consisting of four
components: the Proposition (P), the Policy Duration,

the Policy Refresh Interval, and the Policy Source (S).
Proposition (P) is a conditional test on an element such
as a data message, internal node state, or identity (of the
node itself or a neighbor) and evaluates to either TRUE
or FALSE. For example, a P may be written as
(Node=Alice) & (BeaconSrc=Bob), where Node is the
node at which the proposition is being tested, and
BeaconSrc stands for the beacon-sending node. The
Policy Duration ([ts; te]) specifies the start and end time
of a policy. The Policy Refresh Interval (tr) specifies an
optional maximum duration that a policy is allowed to
be considered viable without receiving confirmation that
the policy has not changed. The Source (S) policy
component indicates the originator of the policy. For
ease of exposition, we will not consider policy duration,
the policy refresh interval or the policy source when
considering the bootstrap protocol; see [17] for the more
general case; we will consider these aspects of policy in
Section V when we study policy propagation.

Since our focus is on the bootstrap process, we assume
that policies are consistent, and that a mechanism (e.g.,
[12]) exists for determining the integrity, validity and
non-repudiation of any policy that a node receives.

Axiomatic Policies. Axiomatic policies are defined as
the initial set of policies that are installed a priori and
allow a deny-by-default system to establish neighbor
relationships. The key challenge here will be to define a
small set of primitive policy elements (e.g., whether a
node is allowed to advertise its existence via beacon
messages, whether it can receive additional policy from
a given neighbor). Once neighbor relations have been
established, higher-level functionality, such as routing
can be established. Axiomatic policies do not preclude a
node from being initialized with additional policies for
performance reasons. The existence and size of this set
of axiomatic policies are key measures of the
practicality of deny-by-default security. We conjecture
the following policies form the axiomatic set:
• PolicySource policy, a rule that defines which nodes are

authorized sources of new policies and policy
updates/refresh. We assume that all nodes are preloaded
with a set of trusted policy servers, and our policy integrity
assumption prevents false policy insertion/edits.

• MayBeacon policy specifies whether a node is allowed to
advertise its existence.

• MayShare policy of a node with respect to another node
specifies whether this node may share a policy with the other
node.

3 of 7

• PolicyAccept policy of a node specifies the set of nodes
from which this node may accept policy updates. Note that
our assumption of policy consistency assures that nodes
having the same policies arrive at common policy state.

We next demonstrate that these policies enable any
two nodes to set up a neighbor link via our proposed
bootstrap protocol.

IV BOOTSTRAPPING A NEIGHBOR LINK

In this section, we propose a bootstrap protocol that
allows two nodes to establish a neighbor relationship
when that relationship, and the process for bootstrapping
that relationship, is consistent with policy. The bootstrap
protocol only relies on the axiomatic policies defined in
the previous section. When two nodes “establish a
neighbor relationship”, we mean that the final state of
both nodes is that they have each agreed that they can
send and receive messages to/from each other.

Although the axiomatic policies are required to
bootstrap the system, they do not define whether a
particular neighbor relationship is allowed. Therefore, a
node will typically also be initialized with policy that
defines a set of one or more nodes with whom it is
allowed to run the bootstrap protocol. If this initial set is
empty, a node will be unable to join the network or
obtain additional policy unless there is a path between
this node and a policy server. If the set is non-empty,
the node may run the bootstrap protocol with these
nodes, possibly obtaining new policies that would then
allow it run the bootstrap protocol with yet other nodes.
The OkNeighbor policy defines whether a particular
neighbor relationship is allowed. The OkNeighbor
policy of node A with respect to node B is TRUE if B is
allowed to be a neighbor of A. As will be illustrated, this
policy is not axiomatic; it can be obtained by running
the bootstrap protocol.

In our proposed bootstrap protocol, two nodes that
encounter each other can exchange OkNeighbor policies
(if allowed by their axiomatic policies MayShare) even
without establishing a neighbor relationship; if their
OkNeighbor policy with respect to each other are both
TRUE, then they are able to additionally establish a
neighbor link between themselves.

A. Bootstrap Protocol

We now formally describe the bootstrap protocol.
Consider two nodes meeting in a MANET, that are
situated such that each can hear the other’s
transmissions. Without loss of generality, let T denote
the node under study, and X denote the other node just
encountered. Let us now consider T’s bootstrap with X
(symmetrically, X goes through the same process).

We use a Finite State Machine (FSM) [5] to describe

the internal state transitions of node T. As shown in
Figure 1, there are four internal node states: active

beacon (A), passive (P), half-open (H), and full-open

(F). If a node has no OkNeighbor policy or an undefined
OkNeighbor policy with respect to the other node, it can
acquire this policy through message exchange with the
other node (if carrying the policy), even though these
two nodes have yet to establish a neighbor relationship.
When a node has a valid and affirmative OkNeighbor
(evaluates to TRUE) policy with respect to the other
node, it starts its neighbor link setup process with the
other node. The notations and terms used in the
bootstrap protocol and FSM are given in Table I and
Figure 2. The actions and transitions in each state of
node T are described as follows.

Active Beacon state (A).

• There are three actions in state A: send a beacon and after

each beacon, clear the NP and SP flags. Note that if NP is

set to 1, then the beacon sent will contain a policy request;

if SP is set to 1, the beacon sent will contain policy for the

other node.

• When T sends a beacon, it remains in state A if nothing else

is changed.

• When T receives any message from node X and T has no or

undefined OkNeighbor policy with respect to X, the

following actions are taken: (i) if received message has

policy for T, verify it and make a decision to accept it or

not based on its axiomatic PolicyAccept policy; (ii) T sets

its internal NP flag to 1 if its OkNeighbor policy remains

undefined (not received in the previous step); (iii) if the

TABLE I NOTATIONS FOR BOOTSTRAP PROTOCOL

Notations for states in Finite State Machine

T this node
X the other node

X→T if in state, means this node knows X has this node
as neighbor

T→X if in state, means this node has X as its neighbor

A active beacon state
P passive listening state
F full-open connection state
H half-open connection state

Messages (note, policy can be attached to Bcn or Nbr, and policy
request (NP) can be attached to Bcn)

Bcn(X) existence beacon sent by node X

Nbr(T→X) neighbor setup request message from T to X

NbrA(T→X) ACK to Nbr(X→T)

NP(T→X) T requests policy from X

Policy(T) policy for node T

Other notations used in state diagram for protocol

NP need policy flag, either 0 or 1
SP share policy flag, either 0 or 1
NP=1 if in state, means the next sent message should

contain policy request;
if in message, means the message asks for policy

SP=1 if in state, means the next sent message should
contain policy for the other node;
if in message, means the message contains policy

Bcn message any message has Bcn

4 of 7

received message also contains a policy request and T’s

axiomatic policy MayShare with respect to X evaluates to

TRUE, then set the SP flag, which will cause the next sent

beacon message to contain policy for X; (iv) return back to

state A.

• Three transitions leave state A. If T receives any beacon
messages from X and T’s OkNeighbor policy evaluates to
TRUE, it enters half-open state H and sets the SP flag if the

received message contains a policy request and if its
MayShare evaluates to TRUE. If T receives a message
containing a neighbor setup request and its OkNeighbor
policy evaluates to TRUE, then it sends an ACK and enters
the full-open state F. If T’s axiomatic policy MayBeacon
becomes FALSE, then it enters passive state P.

Passive state (P)
• There are three transitions out of this state. If T’s

MayBeacon policy becomes TRUE, it enters state A. If T
receives any beacon from X and its OkNeighbor policy
evaluates to TRUE, it enters the half-open state H. If T
receives any message containing a neighbor setup request
and its OkNeighbor policy evaluates to TRUE, then it
sends out an ACK message NbrA and enters the full-open
state F.

• If T does not have valid OkNeighbor policy with respect
to node X, T ignores all messages from X.

Half-open state (H)
• When entering this state, T sends out a neighbor setup

request to node X and clears the SP flag.

• If T receives any message containing policy request from

X and T is allowed to be a neighbor of X and T’s

MayShare policy with respect to X evaluates to TRUE,

then T sets its SP flag and returns back to the half-open

state H. Note that since SP is set, its next neighbor setup

request message should be attached with policy for X.

• If T receives any message containing a neighbor setup

request and its OkNeighbor policy evaluates to TRUE, it

sends out an ACK message, NbrA, and enters the full-

open state, F. If T receives an ACK to its previously sent

neighbor setup request and its OkNeighbor evaluates to

TRUE, then it enters full-open state. There are a number

of neighbor maintenance rules that can lead node T to

other states. They are given in Table II. They deal with

Figure 2. FSM Notation

Figure 1. Finite State Machine for Bootstrap Protocol

TABLE II
NEIGHBOR MAINTENANCE RULES FOR A NODE

Notations for states in state diagram

Nbr timeout & MayBeacon is TRUE enter state A
Nbr timeout & MayBeacon is FALSE enter state P

OkNeighbor is FALSE & MayBeacon is TRUE enter state A
OkNeighbor is FALSE & MayBeacon is FALSE enter state P
OkNeighbor undefined & MayBeacon is TRUE set NP flag,

enter state A
OkNeighbor undefined & MayBeacon is FALSE enter state P

Comments: Nbr timeout means if this node does not hear from
the other node in a pre-specified time interval, then this node
thinks that the link with the other node is broken. OKNeighbor

becomes undefined or invalid once it is expired.

5 of 7

various cases where either the neighbor link setup request

message timeouts, or OkNeighbor policy expires, or its

MayBeacon policy with respect to the other node becomes

FALSE. In all these cases, T enters either passive or active

beacon states to restart the neighbor link establishment

process.

Full-open state (F)

• In this state, node T periodically exchanges messages with

node X for upkeep purposes. T stays in this state if it

receives an ACK to its neighbor link setup request and its

OkNeighbor policy with respect to the other node is still

TRUE.

• Similar to the half-open state, this node also follows the

neighbor maintenance rules shown in Table II that will

lead this node out of state F.

Example. We now illustrate the operation of our

bootstrap protocol. Consider two nodes A and B that

encounter each other and are part of a larger MANET.

Both A and B are preconfigured with MayBeacon equal

to TRUE. Node A carries B’s valid OkNeighbor with

respect to A, and vice versa. But neither one has its own

valid OkNeighbor with respect to the other node. Thus,

in order to set up a neighbor relationship, they need to

first receive their OkNeighbor policies from each other.

Figure 3 shows the neighbor relationship establishment

process, which executes as follows.
1. Node A actively beacons. Its beacon is received by B.

Since B has no or invalid OkNeighbor policy with respect

to A and B’s MayBeacon is TRUE, B sends a beacon with

policy request (the NP flag set to 1) to A.

2. When A receives B’s beacon, it finds that it can share

policy with B but does not have an OkNeighbor policy

with respect to B. A thus sends a beacon to B, with its own

policy request and a policy for B.

3. When B receives its policy from A, it verifies, accepts, and

evaluates the policy. The evaluation of the received policy

sets B’s OkNeighbor policy (with respect to A) to TRUE.

Since B’s MayShare with respect to A is TRUE, it

responds to A’s policy request by attaching a policy for A

to its next beacon sent to A.

4. When A receives its policy from B, it verifies, accepts, and

evaluates the policy. The evaluation of the received policy

sets A’s OkNeighbor policy (with respect to B) to TRUE.

A remains in active beacon state, and sends a beacon to B.

5. Since B’s OkNeighbor with respect to A is TRUE now, B

sends a neighbor link setup request to A when it receives a

beacon from A, and then B enters the half-open state.

6. Since A’s OkNeighbor with respect to B is TRUE now, A

accepts B’s neighbor link setup request, sends a neighbor

ACK message (NbrA) to B, and enters full-open state.

7. B enters the full-open state when it receives NbrA from A.

The neighbor relationship of A and B is now established.

B. Formal verification of bootstrap protocol

In order to verify the correctness of our bootstrap

protocol, we implemented it in SPIN [9], a powerful

model checker for formal verification of distributed

software systems. We built a formal model of our

protocol using the PROMELA (PROcess MEta

LAnguage) language [9]. In order to verify the

correctness of a protocol, SPIN exhaustively searches

the entire state space of communicating nodes and

message channels. We allow message errors or loss in

transfer in a deterministic manner. In Figure 4, we show

representative SPIN code1 for a loop-back transition (the

top left-most transition shown in Figure 1). This piece

of code shows that once a node (with missing or invalid

OkNeighbor policy) receives a message, it performs a

sequence of actions (with conditional tests) and returns

to its initial state. Depending on the values of the NP

and SP flags, a node may attach a policy request or

policy to a message, indicated by message variable name

containing PolicyReq or Policy in Figure 4.

We have formally verified the correctness (safety and

liveness) of our bootstrap protocol. Specifically, for

safety, we have shown that the protocol is deadlock free,

and that if the OkNeighbor policy of either one of the

two nodes evaluates to FALSE, then the nodes will

never be able to set up a neighbor relationship.

Regarding liveness, we have proved the following

claims. First, if at least one of two nodes do not have a

valid OkNeighbor policy with respect to the other node,

and they are not connected via neighbor link, and both

nodes can actively beacon, and they have affirmative

1 Complete SPIN code is given in technical report [17].

Figure 3. Sample path of bootstrap protocol execution. V stands for
the verification of received message.

6 of 7

MayShare policy with respect to each other, and they are

allowed to accept policy from each other, then

eventually they both can receive their OkNeighbor

policies even without a neighbor relationship. Second, if

the OkNeighbor policies of both nodes evaluate to

TRUE with respect to each other, and at least one of

them can actively beacon, then eventually they will

establish a neighbor relationship with each other.

V. POLICY PROPAGATION

Once nodes have established a neighbor relationship

via our bootstrap protocol, they may receive updated

policies that have been propagated through the network.

A deny-by-default network is completely bootstrapped

once this propagation process is complete. Here we

assume that routing protocols are in place and focus on

the manner in which policy updates are propagated.

Before a node receives the updated policy, it is

considered vulnerable. We define vulnerability as the

expected fraction of time that a node is vulnerable. This

value is used as a security metric for evaluating policy

propagation. We define the signaling overhead as the

fraction of time that the network is used for policy

propagation − during which the channel cannot be used

to transfer other data. It is used as a performance metric.

A longer policy propagation time means a longer

vulnerable period. We assume that the policy

propagation time is given (a function of underlying

routing protocol, mobility, etc), and focus on evaluating

three basic policy dissemination architectures. Our

analysis can help designers of access control to set the

policy refresh interval tr and helps a node to determine

how frequently it should pull policies from servers in

order to meet certain levels of security and performance.

The three basic policy dissemination architectures are

periodic refresh only, pull, and push. In periodic refresh

only, a policy server periodically broadcasts policies at

interval tr, regardless whether policies are updated or

not. In pull, nodes actively and periodically request

policies from policy servers. In push, a policy server

pushes policy to other nodes whenever an update (or

change) is available. Intuitively, nodes are less

vulnerable if policies are more frequently refreshed

through the network, but more policy beacons in the

network leads to higher signaling overhead and less

available network capacity for other data transfer. A

security-concerned user might be inclined to pull

actively while sacrificing some performance, whereas a

performance-concerned user might simply rely on the

default periodic refresh to receive policies. Our analysis

below provides insights into this tradeoff and presents

design guidelines.

We have conducted analysis via simple queuing

models to quantify the tradeoff between network

vulnerability and the overhead incurred by the three

dynamic policy-dissemination approaches. We solve for

vulnerability and signaling overhead, under the

assumption that all time intervals (such as policy refresh

from server, policy update, and policy pull from nodes)

follow some given probability distributions or empirical

distributions, and allow policy messages to be randomly

lost in the network. For details, see [17].

We now present some numerical evaluation results

based on the analysis given in [17]. First, we fix the

average policy change (or update) interval, and fix the

policy fetching time (or propagation time) Kf at one

thousandth of policy change interval. We vary the policy

Figure 4. Sample SPIN code written in PROMELA for modeling the
protocol. This piece of code describes a loop-back transition of active
beacon state of a node. Variables prefixed with bcn represent beacon
messages. Each policy variable (prefixed with Policy) can take three
values: 0 means no such policy; 1 means the policy evaluates to
FALSE; 2 means the policy evaluates to TRUE. For instance,
PolicyOkNbr=0 means that this node does not have valid
OkNeighbor with respect to the other node. PolicyMayBcn=2 means
that this node can actively beacon. “mysend” is a procedure for
sending messages in wireless channel, and “msg_rcv” is a procedure
for receiving messages from wireless channel. We use bit variables
anymsg, reqmsg, and polmsg to indicate whether any message has
been received, the received message contains policy request, and the
received message contains policy, respectively. We use bit variable
policy_ok_nbr_flag to indicate whether the received and accepted
OkNeighbor policy evaluates to TRUE or not. Note that this variable
represents a decision made by some other system-wide component,
not by the bootstrap protocol.

7 of 7

refresh interval in the periodic refresh only architecture.

In the pull architecture, we set the number of pulls per

policy refresh interval to be 10. Results are shown in

Figure 5. We can make the following observations: 1)

vulnerability decreases with increased signaling

overhead, so clearly there is a security vs. signaling

tradeoff; 2) the pull architecture provides significantly

decreased vulnerability over periodic refresh only with a

ten-fold signaling overhead increase; 3) the push

architecture’s performance depends only on the policy

change rate, and provides a vulnerability lower bound.

Next, we let the policy fetching time, Kf, be

exponentially distributed and let nodes actively pull

policies in each refresh interval. Our results in [17]

show that a longer average fetching time leads to a

higher vulnerability and larger overhead, but in general,

pull achieves lower vulnerability and overhead. In

addition, we consider that policy message can be lost in

the network, and that the policy server re-sends policy

message after a certain timeout when loss occurs. Our

results in [17] show that a larger loss probability leads to

a higher vulnerability and larger overhead, and in

general pull achieves lower vulnerability and overhead.

We also observe that low loss probabilities (less than 0.2

in our case) do not significantly affect vulnerability and

signaling overhead.

In sum, our vulnerability analysis of policy

propagation in the bootstrapping process quantifies the

tradeoff between security and performance, and shows

that a good choice of pull frequency can effectively

achieve low vulnerability and high performance. More

generally, our analysis provides a technique for policy

servers and users to achieve their desired levels security

and performance.

VI. CONCLUSION AND FUTURE WORK

To address the challenges of bootstrapping deny-by-

default access control in MANETs, we have identified a

set of axiomatic policies and proposed a bootstrap

protocol for establishing secure neighbor relationships

among nodes. The safety and liveness of the protocol

were formally verified via model checking. We have

also analyzed three basic policy dissemination

architectures in the bootstrapping process and quantified

the tradeoff between security and performance. Our

current bootstrap protocol is designed for establishing a

neighbor link by using axiomatic policies. As a future

work, we will expand this protocol to safely and

efficiently bootstrap the whole network, and to control

policy propagation. We will implement and experiment

with our bootstrap protocol in real deny-by-default

MANETs. We will apply and verify our vulnerability

analysis in practice and with empirical data.

REFERENCES

[1] K. Argyraki and D. Cheriton, “Network capabilities: The good, the bad
and the ugly,” in Proc. of Fourth Workshop on Hot Topics in Networks

(HotNets-IV), November 2005.
[2] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker.

“Off by default!” in Proc. of Fourth Workshop on Hot Topics in

Networks (HotNets-IV), November 2005.
[3] M. Bauer, “Paranoid penguin: Introduction to selinux, part ii”, Linux

Journal, vol. 155, 2007.
[4] S. Bhatt, S. R. Rajagopalan, and P. Rao, “Federated security

management for dynamic coalitions,” in DARPA Information

Survivability Conference and Exposition, 2003.
[5] G. Bochmann and C. Sunshine, “Formal methods in communication

protocol design,” IEEE Transactions on Communications, vol. 28, no.
4, pp. 624– 631, 1980.

[6] S. Bratus, A. Ferguson, D. McIlroy, and S. Smith, “Pastures: Towards
usable security policy engineering,” in 2nd International Conference on

Availability, Reliability and Security, 2007.
[7] C.-Y. J. Chiang, S. Demers, P. Gopalakrishnan, L. Kant, A. Poylisher,

Y.-H. Cheng, R. Chadha, G. Levin, S. Li, Y. Ling, S. Newman, L.
LaVergne, and R. Lo, “Performance analysis of drama: a distributed
policy-based system for manet management,” in IEEE MILCOM, 2006.

[8] J. Clark, J. Murdoch, J. McDermid, S. Sen, H. Chivers, O. Worthington,
and P. Rohatgi, “Threat modelling for mobile ad hoc and sensor
networks,” in Annual Conference of ITA, 2007.

[9] G. J. Holzmann, The Spin Model Checker: Primer and Reference

Manual. Addison-Wesley, September 2003.
[10] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith.

“Implementing a distributed firewall,” in ACM Conference on

Computer and Communications Security, 2000.
[11] S. Kent and K. Seo, IETF RFC 4301: Security architecture for the

internet protocol. 2005.
[12] A. Keromytis, S. Ioannidis, M. Greenwald, and J. Smith, “The

strongman architecture,” in 3rd DARPA Information Survivability

Conference and Exposition, 2003.
[13] H. Peine, “Rules of thumb for developing secure software: Analyzing

and consolidating two proposed sets of rules,” in 3rd Int. Conf. on

Availability, Reliability and Security, 2008.
[14] T. Wolf, “Design of a network architecture with inherent data path

security,” in 3rd ACM/IEEE Symposium on Architecture for networking

and communications systems, 2007.
[15] H. Wong, C.-K. Chau, J. Crowcroft, and K.-W. Lee, “How to enable

policy-based interactions in dynamic wieless networks?” in IEEE

Workshop on Policies for Distributed Systems and Networks, 2008.
[16] X. Yang, D. Wetherall, and T. Anderson, “A DOS-limiting network

architecture,” in ACM SIGCOMM, 2005.
[17] H. Zhang, B. DeCleene, J. Kurose, and D. Towsely, “Vulnerability

analysis of policy bootstrapping,” in Tec. Report, UMass. Amherst,
2008, ftp://gaia.cs.umass.edu/pub/Zhang08_vulnerability_analysis.pdf.

[18] R.B. Bobba, L. Eschenauer, V. Gligor, and W. Arbaugh, “Bootstrapping
security associations for routing in mobile ad-hoc networks”, in IEEE

Globecom, 2003.
[19] M. Srivatsa, D. Agrawal and S. Balfe, "Bootstrapping Coalition

MANETs" in ITA Technical Report, February 2008.

Figure 5. (a) expected vulnerability when Kf is fixed. (b)
expected signaling overhead when Kf is fixed.

